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Abstract

Neural Machine Translation (NMT) depends on large amounts of parallel data, which

is scarce for low-resource language pairs and domains. Extracting parallel sentences

from a non-parallel source using similarity measures over interlingual representations is

our proposed method towards low-resource Machine Translation (MT). In an encoder-

decoder NMT system, such representations can be observed for instance in the encoder

outputs or the word embeddings when the model is trained on multilingual data. To

exploit the fact that these representations improve in quality over time, this thesis project

envisions to develop a parallel data extraction framework that extracts parallel data

online, i.e., at the same time as the MT model is being trained. In this report, the

literature review is presented, followed by an outline of the proposed system and the

experiments performed.
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Chapter 1

Introduction

Neural approaches to Machine Translation (MT) (Kalchbrenner and Blunsom, 2013;

Sutskever et al., 2014; Cho et al., 2014b; Bahdanau et al., 2014; Luong et al., 2015a) have

brought major advances in translation quality. To train such models, large amounts of

sentence-aligned parallel data are needed, which is often scarce for low-resource language

pairs or domains. As such, communities of low-resource languages can currently hardly

be provided with high quality MT. Overcoming this constraint by either extracting

parallel data from non-parallel sources or developing unsupervised techniques in NMT is

therefore crucial to cover all languages and therewith also to the further propagation of

freely accessible information as well as the breaking down of language barriers between

language communities.

Non-parallel documents of similar contents, or comparable corpora, are becoming eas-

ier to obtain (Paramita et al., 2019), and extracting parallel sentences from them has

recently become a wide research field. Some approaches focus on estimating similari-

ties between Neural Machine Translation (NMT) internal representations to select pairs

(Grégoire and Langlais, 2018; Artetxe and Schwenk, 2018; Bouamor and Sajjad, 2018).

All of these approaches separate the parallel sentence extraction and NMT training

tasks. However, in España-Bonet et al. (2017), it has been shown that in multilingual

NMT systems, representations of sentences which are translations of each other tend to

increase in cosine similarity as training progresses. That is, as training steps are per-

formed, the NMT representations become better indicators of whether a sentence pair

is parallel. In this project we want to exploit this fact by developing a joint extraction

and NMT training system. The premise is that NMT systems —either sequence to se-

quence models with RNNs, transformers, or any architecture based on encoder-decoder

models— learn strong enough representations of words and sentences to judge online,

i.e. during NMT training, if an input sentence is useful. The stronger the internal rep-

resentations, the more reliable pairs will be selected; and the better the pairs, the better

the learning: a doubly virtuous circle.
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The above being the motivation and main idea of our study, the following chapters

will focus on a variety of aspects related to online parallel sentence extraction. After giv-

ing a brief introduction to MT, especially NMT and good practices that come with it, an

overview of related research fields such as multilingual MT, domain adaptation and espe-

cially low-resource MT will be given. After the literature review in 2, an in-depth outline

to our online parallel data extraction system is given. We will start by introducing the

sentence representations used for extraction in 3.1, followed by the sentence scoring (3.2)

and filtering techniques (3.3). We especially focus on finding an efficient, high accuracy

extraction method without the introduction of any new hyperparameters. This explo-

ration of different extraction methods is performed in the first set of experiments. After

defining the data used for the experiments as well as their pre-processing (4.1), the first

experiments, which are performed in an unsupervised setting without any parallel data,

are presented (4.2). These do not only examine the performance of different extraction

techniques, but also analyze the internal representations and their roles and impact on

extraction as training progresses. Apart from a quantitative analysis, we will also show

sample sentences extracted during training and provide a short qualitative analysis of

the extraction. After having observed the unsupervised scenario, the best performing

model will be used to explore the semi-supervised scenario where a small parallel base

corpus is given for initialization 4.3. These will also incorporate a quantitative analysis

of the representations and extracted pairs. Having explored our online-parallel sentence

extraction in both unsupervised and semi-supervised settings, two smaller experiments

focusing on different applications of the system, namely low-resource MT on Gujarati-

English (4.4.1) and corpus filtering (4.4.2), will follow. At the end, a short summary of

the major findings from the experiments will be given in addition to future research to

undertake.
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Chapter 2

Related Work

In this chapter, a brief insight into the history of MT, from rule-based MT (RBMT)

over Statistical Machine Translation (SMT) to NMT is given. This is followed by a more

concrete description of a popular NMT architecture. After then having mentioned several

points of good-practice in NMT, covering topics such as the out-of-vocabulary (OOV)

problem, batch creation and noise, a special focus will be placed on low-resource MT.

As such, several approaches towards low-resource MT will be presented, ranging from

pivot translation and multilingual NMT over parallel data extraction to the exploitation

of monolingual data.

2.1 From Rule-Based to Statistical Machine Translation

The idea of using machines to translate between languages has existed for more than

a century, and it was in the early 1930’s that first patents on so-called mechanical

dictionaries supplied first concrete concepts on this field (Hutchins, 2004). Georges

Artsrouni developed a machine that would store source language words and their cor-

responding translations in several languages on a memory band, which could then be

retrieved (Daumas, 1965). Almost simultaneously, Petr Trojanskij described a multilin-

gual translation machine that would use abstract Esperanto-based symbols to encode

grammatical functions between languages (Hutchins, 2006). This machine can be seen as

a precursor of the idea of interlinguality in translation, which intends to add an abstract

middle layer between two languages to be translated in order to make the translation

process more generalizable between various language combinations. In fact, later we

will see that the idea of interlinguality traverses the field of machine translation in the

form of rule-based approaches based on abstract languages —so-called interlinguas—

all the way to interlingual representations found in state-of-the-art NMT systems (see

2.2). More than a decade later, in 1949, Warren Weaver published his translation mem-
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orandum (Weaver, 1949), in which he foresaw the potential of Claude Shannon’s Noisy

Channel model (Shannon, 1948) for automatic translation, which would open the doors

of SMT and revolutionize the field at the end of the millennium.

In the 1950’s and 60’s, MT research bloomed and the major branches of rule-based

Machine Translation came to be. The first one being the direct translation ap-

proach, consisting of rewriting rules to translate between a specific source and a target

language using only a minimal amount of structural analysis. One early example is

Gilbert King’s method, which tries to solve lexical ambiguity simply by applying word-

selection-rules based on the surrounding context words (King and Wieselman, 1956).

Another approach is the interlingua model, which tries to overcome the problem of

having to write new rules for every possible language pair by first analyzing the source

language input and generalizing it to a language independent interlingua representation,

which is then translated via rules into the target language. However, due to the com-

plexity of the analysis needed to transfer a phrase into an interlingua and back, and the

proneness to errors this yields, the idea of encoding into and decoding from an interlin-

gua did not reach an effective implementation until the advent of modern multilingual

NMT systems; in the form of multilingual representations. Lastly, transfer models can

be thought of as the golden mean between the brute-force nature of direct translation

models and the highly analytical interlingua models by first intending to disambiguate

the source sentence –via a prior analysis taking into account its syntax and semantics—

before transferring it into the target language (Hutchins, 2006, 376).

While RBMT yielded first practical implementations of automatic translation, they

come attached with immense amounts of manual rule creation and updating. It was

therefore a major change in practice when in 1990 a group of researchers at IBM pub-

lished a first version of their statistical machine translation model, which would later

be known as the IBM model (Brown et al., 1990). It essentially consists of a language

model, using n-gram word probabilities, and a translation model. The latter of which

uses, inter alia, alignment probabilities between source and target words. However,

word-based models ignored the compositional nature of language and it thus did not

take long until phrase-based SMT (PBSMT) systems were developed, outperforming

word-based and even syntax-based systems (Koehn et al., 2003). In order to further gen-

eralize the behavior of semantically similar words as well as taking into account a larger

context window than traditional discrete language models can, Bengio et al. (2003) de-

veloped a neural network based language model using distributed representations for

words —word-embeddings— which was soon applied to SMT for re-ranking possible can-

didate translations (Schwenk et al., 2006). Similar approaches were used for re-ranking

translations using neural-network-based translation models (Schwenk, 2012; Son et al.,

2012) as well as joint models (Devlin et al., 2014).1

1The joint model uses a language model as well as a context window over the source sentence to

calculate the probability of the next target word. This is quite similar to what happens in the attention

mechanism of a modern sequence-to-sequence NMT system.
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2.2 Neural Machine Translation

As neural network based components were introduced to SMT, the early 2010’s also saw

the emergence of first NMT systems consisting of jointly-trained neural networks capa-

ble of taking a source sentence as input and outputting a translated target sentence. A

common architecture is the encoder-decoder, in which the former encodes a variable-

length sequence into a fixed-length vector and the latter then decodes this vector back

to a variable-length sequence. The first example of such a network introduced in Kalch-

brenner and Blunsom (2013) uses a convolutional neural network (CNN) as the encoder,

as well as an additional recurrent neural network (RNN) layer in their decoder in

order to overcome the Markov Assumption that comes with conventional n-gram models.

Although vanilla RNN’s (Elman, 1991) are a good choice for modeling natural language

sequences with large contexts, since they can “use their feedback connections to store

representations of recent input events”(Hochreiter et al., 2001, 2), they do come with

major practical flaws such as the vanishing gradient problem2 which makes training basic

RNN’s and maintaining long-range dependencies difficult. In a similar encoder-decoder

framework, Sutskever et al. (2014) used long short-term-memory (LSTM) (Hochre-

iter and Schmidhuber, 1997) units to surmount the limitations of simple RNNs and thus

to further improve the handling of long-range dependencies. Their sequence-to-sequence

model is also sensible to word-order, as opposed to Kalchbrenner and Blunsom (2013)’s

convolutional encoder. Alternatively to LSTMs, gated recurrent units (GRU) have

also been used for these purposes (Cho et al., 2014b), although recent findings suggest

that GRUs tend to be outperformed by LSTMs for this task (Britz et al., 2017).

2.2.1 Model Description

The encoder-decoder framework common to Bahdanau et al. (2014), Cho et al. (2014b),

Sutskever et al. (2014) and many others relies on the following principles.3

The encoder reads the source sequence x = (x1, ..., xTx), xi ∈ RKx , where Tx is the

total number of time steps —where each token in a sentence constitutes a time step—

in the current sequence and Kx is the vocabulary size of the source language, into a

vector c. In a first step, a continuous representation vxi of element xi —which in this

description is a one-hot word vector but could also be a word index— is retrieved from a

word embedding matrix Ē ∈ Rm×Kx , where m is the word embedding dimensionality,

as such:

2The vanishing gradient problem is such that “the influence of a given input on the hidden layer,

and therefore on the network output, either decays or blows up exponentially as it cycles around the

network’s recurrent connections.” (Graves, 2012, 31)
3The notation in this section is based on Bahdanau et al. (2014) and Graves (2013).
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vxi = Ēxi (2.1)

The new sequence of continuous representations v = (vxi , ...vxTx
) is then encoded

into a fixed-length vector. For this purpose, an RNN is a common choice, such that

the output vector is the last hidden state hTx , which acts as a summary of the input

sentence. An RNN’s hidden states are defined as:

ht = f(vxt , ht−1) (2.2)

where ht ∈ R is the RNN’s hidden state at time step t and f is a non-linear function

such as a GRU (Cho et al., 2014b), LSTM (Sutskever et al., 2014) or even a simple sig-

moid or tanh (Kalchbrenner and Blunsom, 2013). LSTMs are used for our experiments,

which, as described by Graves (2013), calculate ht as:

ht = ottanh(ct) (2.3)

where ot is the output gate and ct the cell state, defined as:

ot = σ(Wvovxt +Whoht−1 +Wcoct + bo) (2.4)

ct = ftct−1 + ittanh(Wvcvxt +Whcht−1 + bc) (2.5)

where σ is the logistic sigmoid function, the various W s are weight matrices4, bo and

bc the bias terms, ft the forget gate and it the input gate, as such:

ft = σ(Wvfvxt +Whfht−1 +Wcfct−1 + bf ) (2.6)

it = σ(Wvivxt +Whiht−1 +Wcict−1 + bi) (2.7)

where, again, the W s and bf , bi are the weights and biases respectively. Once all

elements of the input sequence have been fed through the encoder, the last hidden state

hTx is returned.

The task of the decoder is then to iteratively predict the target words yt given the

last hidden state hTx , the current decoder state st and the previously generated word

4The subscripts of the weight matrices, for example Wvo, indicate the corresponding vector (vxt in

this example) and the current gate or cell state being calculated (ot etc.).
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yt−1. The probability p(yt) of all possible target words at time step t is then modeled

as such:

p(yt) = g(yt−1, st, hTx) (2.8)

where g can, similarly to the encoder, be an LSTM, GRU or other nonlinear function

that returns the vector of probabilities for the current time step. The softmax function

can then be used over all entries in p(yt) to find the most probable target word.

Thus, the decoder assigns probabilities to potential target word candidates based

on the source sequence and previously generated words. In this setup, it takes the

information about the source sentence from the last hidden state of the encoder only.

However, reading all of the target sentence from a single fixed-length vector leads to

a degrading translation quality as source sentences become more complex (Cho et al.,

2014a). To overcome this problem, attention mechanisms, which allow the decoder

to attend on various parts of the source sentence before generating a target word, came

to be.

The two major types of attention mechanisms are the multiplicative (Luong et al.,

2015a) and additive (Bahdanau et al., 2014) approaches. While the former allows the

model to attend on a preselected window over the source hidden states, the latter, while

being more computationally expensive, allows the model to attend freely over the hidden

states of the complete source sequence, which leads to a slightly better performance

(Britz et al., 2017). In order to perform attention, the encoder returns a set h containing

each hidden state at each time step, such that:

h = {h1, ..., hTx} (2.9)

In Bahdanau et al. (2014), a bidirectional RNN (BRNN) is used, which consists

of a forward and a backward RNN. While the forward RNN reads in the sequence from

x1 to xTx returning forward hidden states (
−→
h 1, ...,

−→
h Tx), the backward RNN reads the

sequence in the opposite direction returning backward hidden states (
←−
h 1, ...,

←−
h Tx). In

such a setting, the hidden states passed to h are defined as the concatenation of the

forward and backward hidden state for each source word xi, such that:

hi = [
−→
h i;
←−
h i] (2.10)

Since each element’s hidden state is directly influenced by the time steps preced-

ing (and in the case of the BRNN also the steps following it), they carry contextual
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information for every word and can therefore be referred to as context vectors.5 In a

global attention mechanism, these context vectors are assigned different weights by an

alignment model based on the previous decoder hidden state. Instead of the last hidden

state only, these newly weighted encoder hidden states are then passed to the decoder

at each time step i:

p(yi) = g(yi−1, si, ci) (2.11)

where yi−1 is the previously generated word, si the current decoder state, and ci the

weighted encoder hidden states, defined by Bahdanau et al. (2014) as:

ci =

Tx∑
j=1

aijhj (2.12)

aij =
exp(eij)∑Tx
k=1 exp(eik)

(2.13)

eij = a(si−1, hj) (2.14)

Where a is a feed forward neural network. As such, the decoder does not rely

on the lossy sentence representation of the last encoder hidden state, but can instead

search through each hidden state corresponding to a source word and its context before

generating a target word yt.

As attention mechanism brought a major boost in performance of RNN-based NMT

systems, an alternative model came about that does away with RNNs completely by

replacing them with several stacks of self-attention over the source and target sequence;

the so-called transformer, whose architecture is best described in the original paper by

Vaswani et al. (2017). Additionally to the LSTM-based models, we will also apply this

newer architecture in our experiments.

2.3 Good Practices in NMT

As is common to most machine learning approaches, good practices to overcome limi-

tations and improve overall performance of a specific task are explored by the research

5Note that the term context vector is an ambiguous term in the field of NMT, as it has been used

to describe various components of sequence-to-sequence models such as the output of the attention

mechanism in (Bahdanau et al., 2014) or as the set of encoder outputs (España-Bonet et al., 2017). For

our purposes the latter definition is intended.
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community over time. In this section, some of the major points towards a good practice

in NMT are described.

2.3.1 The Out of Vocabulary Problem

Natural languages come with large vocabularies, with modern dictionaries often citing

more than hundreds of thousands of words. Taking into account that in standard MT,

every word form —or type— has its own vocabulary entry, these dictionary sizes quickly

surpass the possibilities of computation —especially for languages with complex morpho-

logical forms such as inflection, compounding or affixation— as NMT vocabulary sizes

are usually limited within the ten thousands. A simple way to overcome this problem

is to define a limited vocabulary and replace all out-of-vocabulary (OOV) words with a

reserved symbol. Nevertheless, the translation quality suffers the larger the number of

unknown words (Cho et al., 2014a). It has therefore been the object of MT research to

tackle the OOV problem with more elaborate techniques.

Such techniques include —but are not limited to— performing softmax over a varying

subset of a large vocabulary during training and decoding (Jean et al., 2015), or copying

unknown source words directly into the target sentence or using back-off dictionaries

(Luong et al., 2015b). A simple but efficient technique is using subword units as part

of the vocabulary, so that morphologically complex structures and named entities can

be decomposed into simpler units, thus decreasing the vocabulary size immensely. The

context, that the source subword units are embedded in, is then exploited by the NMT

to decode them into corresponding target units. For the purpose of finding appropriate

subword units, unsupervised morpheme induction has been suggested (Virpioja et al.,

2007; Stallard et al., 2012), while Sennrich et al. (2016b) adapt byte-pair encoding (BPE)

(Gage, 1994), a data compression algorithm that iteratively merges the most frequent

adjacently occurring bytes in a sequence with a single, unused byte. Similarly, when

BPE is applied to characters instead of bytes, the result is a mix of frequent words and

subword units. While BPE is not linguistically motivated, it has the major advantage

of being open-vocabulary, as any previously unseen data can undergo the same merge

operations as the training data so that no unseen units are encountered during testing.

Due to its simple yet efficient solution of the out-of-vocabulary problem, BPE is also

used in our experiments (see 4.1).

2.3.2 Batch Creation

For increased efficiency and quality, NMT models do not backpropagate after each

source-target sentence pair, but instead train on mini-batches —often simply called

batches— of sentences, updating parameters between each batch. Within each batch,
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sentences of varying lengths might be included, where shorter sentences need to be

padded with zero-entries to match the length of the longest sequence within the same

batch. As computational cost is thus proportional to the longest sentence in a batch,

reducing the number of long-sequence batches by creating batches holding similar length

sequences is a common practice to speedup the training process (Sutskever et al., 2014).6

While there are no major differences in accuracy, unsorted batches or source sentence

length ordered batches seem to have faster dropping perplexities than other sorting

methods when using the optimization algorithm Adam (Kingma and Ba, 2015). Using

stochastic gradient descent (SGD), the sorting method has little effect on the perplexity

drop, thus using the most efficient sorting method, namely sorting on the target sentence

length and breaking ties via the source sentence length, is a good option (Morishita et al.,

2017).

While such sorting can be performed on the corpus directly before dividing it into

batches, this leads to the same sentences appearing next to each other during training as

well as favors similar sentences to appear in the same batch, as utterances of specific sizes

tend to share features (Doetsch et al., 2017). Bucketing, a method where sentences

of similar length are placed in the same bucket, so that at each epoch the model can

draw random samples from a bucket to create a batch of varying sentences with similar

length, is a popular method to overcome the above limitation.

As for the number of sentences per batch, larger batches7 seem to lead to more stable

gradients as more sentences have an impact on the update, having a positive impact on

accuracy (Morishita et al., 2017). The same positive impact of larger batch sizes has

also been observed for Transformer models (Popel and Bojar, 2018).

For our purposes, drawing batches of 64 (LSTM) or 50 (Transformer) sentences from

source length sorted buckets was chosen.

2.3.3 Model Hyperparameters

When training neural networks, one is confronted with the task of finding appropriate

hyperparameter settings, usually led by a mixture of learning from previous work, tuning

and intuition. As for NMT, some investigation has been done in hope to create a canon

of good practice for setting hyperparameters.

Embedding dimensionality as one hyperparameter of a RNN-based NMT system

tend to perform slightly better with increasing size. Nevertheless, comparing a 2048

6Sutskever et al. (2014) observed that a model with sentence-length ordered batches finished compu-

tation in half the time as opposed to a model with randomly ordered batches.
7As 64 is the largest batch size investigated by Morishita et al. (2017) due to memory constraints,

it is not clear if even larger batches have the same effect. One major concern is that with even larger

batches, the number of parameter updates in a time frame decreases, slowing convergence.
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dimensional embedding to one of 128 dimensions, Britz et al. (2017) report that the

larger embedding outperformed the smaller only by a small margin8 while taking twice

the time to reach convergence.

Another variable of an RNN-based NMT model is the depth of its encoder and

decoder. The number of hidden layers of successful NMT models usually ranges from 1

(Grégoire and Langlais, 2018) up to 8 (Luong et al., 2015b). Nevertheless, while there

seems to be a tendency to assume that deeper RNNs outperform shallow ones (Sutskever

et al., 2014), the experiments of Britz et al. (2017) suggest that this does not hold true

for the encoder, since no statistically significant boost in performance was observed

when increasing the encoder depth to a number larger than 2. They further showed that

BRNNs do not significantly outperform unidirectional RNNs.

For Transformer models, larger models —e.g. with an increased size of the feed-

forward layers and a larger number of heads— generally outperform smaller models.

However, these take longer to converge and may lead to out-of-memory errors. In that

case, using a smaller model with a larger batch size is preferred (Popel and Bojar, 2018).

Regarding the maximum sequence length passed to a Transformer model, Popel

and Bojar (2018) find that setting this value too low9 will result in a decay in translation

quality, as a larger number of the training corpus may be excluded and the model will

not be able to decode sentences longer than the maximum length set during training,

degrading its performance at test time. Combining a larger batch size of 2000 tokens

with a reasonably large maximum length of 70 is therefore advisable.

As for the learning rate, Popel and Bojar (2018) further show that a learning rate

of 0.05− 0.25 yields similarly good results. In case the learning rate is set too high, the

models optimizer may jump over local minima and wander off into a plateau, leading to

a failed training. In such cases, decreasing the learning rate as well as applying gradient

clipping is advisable next to increasing the warm-up steps of the noam schedule used in

Transformer models.

Lastly, Popel and Bojar (2018) also show that training a transformer on a larger

amount of Graphics Processing Unit (GPU) does not only reduce computational speed

immensely, but it also increases the translation performance.

2.3.4 Noise

When training NMT models with noisy data, such as for example comparable corpora

based on crawled data from the web, the models performance can be weakened.

8They report an asymptotic significance of p = 0.01 only.
9Where low stands for values around >= 70 for models using smaller batch sizes of 1500 tokens and

>= 50 for those using a larger batch size of 2000 tokens.
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However, the impact of noise on NMT depends on the kind of noise. It seems

that NMT is quite robust against very short sequences or seeing the wrong source lan-

guage, while training on untranslated target sentences has a high impact (Khayrallah

and Koehn, 2018) as it quickly turns the NMT system into an autoencoder.10 A less

obvious noise in crawled data is machine translated content itself, as it often includes

unnatural phrasing and is prone to errors (Antonova and Misyurev, 2011).11

As we envision that our extraction model can identify useful sentences, we did not

apply any language detection as pre-processing to filter out untranslated sentences. The

results of our model applied to filtering can be seen in 4.4.2

2.4 Multilingual Machine Translation

The idea of Multilingual MT is based on single models that strive to translate between

several languages, instead of between only one source and target pair. They are re-

lated to multitask learning (Johnson et al., 2017) —or further, multitask representation

learning— as they learn generalized internal representations that cover various tasks

(here, translating between various languages) via a shared common ground (here, the

underlying semantics of sentences). It has been shown that this type of learning is es-

pecially beneficial for low-resource scenarios, as the general representations learned on

other, yet very similar, tasks helps the model perform significantly better on a task with

little or even no data available (Maurer et al., 2016).

Until recently, multilingual MT systems often came with language specific encoders

or decoders. In Zoph and Knight (2016), a many-to-one system is proposed, which

uses a separate encoder for each source language. In order to combine the hidden states

of the otherwise separated encoders, a combination layer is added on top. Thus, in order

to train this system, a multilingual parallel corpus is required.12 The many-to-many

approach by Firat et al. (2016a) overcomes the necessity of a multi-way parallel corpus by

introducing an attention mechanism over its encoders, removing the constraint of having

to train each encoder simultaneously. Their multilingual model outperforms comparable

one-way MT models, especially for low-resource language pairs. Nevertheless —similarly

to Zoph and Knight (2016) and the many-to-one model by Dong et al. (2015)— separate

encoders and/or decoders are needed to perform multilingual translation, making the

model architecture large and computation much more complex.

10Khayrallah and Koehn (2018) note that with 5% untranslated target sentence noise, the performance

drops by 9.6 BLEU and with 20% of the same noise during training, the number of copied sentences

during testing is catapulted to about 60%.
11Rarrick et al. (2011) showed that the amount of MT content on the web varies by language, with

high-density languages such as German having only a “small percentage” of MT content versus low-

density languages such as Lithuanian or Latvian having an MT content of about 50%.
12That is, for a 2-1 translation setting, a 3-way parallel corpus is needed.
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The solution to the large number of components of multilingual MT systems proved to

be simple. Instead of using separate encoders and decoders for each language, language

tokens specifying the corresponding target language are added to the beginning of each

source language.13 In such a setting, a simple MT system with one encoder and decoder

suffices, as the model learns to translate to the corresponding target language by taking

into account the language token in the source sequence (Ha et al., 2016; Johnson et al.,

2017).

When looking at the attention-weighted encoder states at each decoding step, it can

be observed that source sentences and their translations appear closely in the embed-

ding space. As such, multilingual models trained in a single encoder-decoder framework

can yield interlingual representations. In the same vein as multitask representation

learning, these have been proven to be useful for performing translation between lan-

guages that have no parallel data, so-called zero-shot MT. Concretely speaking, this

is due to the fact that, even though two languages share no parallel data, training them

in the same system with existing parallel data to other pivot languages yields reason-

able interlingual representations for these languages, enforcing that semantically similar

sentences of the two languages without parallel data appear in similar regions of the

embedding space. Because similar words are encoded closely to each other, the model

can even decode sentences which are partially encoded in different languages, thus being

robust against code switching (Johnson et al., 2017).

In section 3, an outline of how to use these interlingual representations to extract

parallel data from a comparable corpus will be given.

2.5 Low-Resource Machine Translation

In the above section we have seen that multilingual MT, when the internal representa-

tions are shared, is beneficial for low-resource MT. However, this is only one approach

to tackling the scarce availability of parallel data.

2.5.1 Pivot Languages and Multilingual NMT

Early approaches towards low-resource MT included using so-called pivot languages,

languages for which rich parallel data is available to both sides of a low-resource language

pair. In SMT, a model for a low-resource pair could be estimated from the translation

probabilities of the source-pivot and pivot-target models (Wu and Wang, 2007). Alterna-

tively, sentences can be simply translated from the source to a pivot language and from

13Another token specifying the source language can also be added. Nevertheless, MT models seem to

learn to recognize the source language and treat it appropriately if the source token is missing.
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there to the target using two separate SMT systems (Utiyama and Isahara, 2007). In

both cases, the pivot language is inserted as an intermediate step within the translation

path of the low-resource source and target pair. Further, generated translations from the

source to the pivot can be used to train a many-to-one multilingual NMT system similar

to Zoph and Knight (2016) on a pseudo multi-way parallel corpus from the low-resource

source and pivot to the target, in order to initialize and train a zero-resource source and

target pair (Firat et al., 2016b).

However, pivot languages can also be thought of as appearing in multilingual MT

models (see 2.4) in the form of high-resource languages that enrich the interlingual rep-

resentations. Nevertheless, multilingual NMT systems tend to decrease in performance

as the number of covered languages increases due to the growing number of languages

that need to be represented in a finite vocabulary size (Lakew et al., 2018). Zoph et al.

(2016) suggest a transfer learning approach in which a small parallel corpus of a low-

resource language pair is used for training on top of a trained high-resource model. In

such a setting, the model is trained to maximize its performance on the low-resource

pair only, yielding better results on its designated low-resource pair than a multilingual

model trained to maximize accuracy on all its covered languages.

2.5.2 Parallel Data Extraction

As seen in 2.5.1, multilingual NMT can improve the performance of low-resource lan-

guage pairs. However, these still perform poor in comparison to their high-resourced

language counterparts. As such, increasing the amount of available parallel data has

become a major objective of low-resource NMT research. For these purposes, a compa-

rable corpus, which is usually a collection of monolingual source and target sentences

in similar domains, is needed. Such a comparable corpus often consists of a large amount

of articles of similar content in the languages of interest, as these can systematically be

crawled from the web. The following task is to identify and extract potentially parallel

sentences from the comparable corpus.

Early approaches for the detection of parallel sentences in non-parallel corpora were

mostly statistical models, including the use of maximum entropy classifiers (Munteanu

and Marcu, 2005), measures based on cross-language information retrieval (Utiyama

and Isahara, 2003), or conditional random fields (Smith et al., 2010). Or structural

approaches with word-to-word lexicon look-ups or the exploitation of the structure of

general web-pages (Resnik and Smith, 2003) or Wikipedia14(Adafre and de Rijke, 2006).

However, most of the above-mentioned methods rely on either feature engineering,

which may be language or resource dependent, or the prior analysis of the document

structure. Following the idea that a pre-trained SMT system already includes a good

14https://www.wikipedia.org/
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dictionary —in the form of translation probabilities over words— and that language-

independent metrics —such as the word error rate15 or translation edit rate (Snover et al.,

2006)— can easily be applied to their outputs, Abdul-Rauf and Schwenk (2009) suggest

to use a SMT system for parallel sentence extraction. For these purposes, the source

sentences of a comparable corpus are translated to the target language using a pre-trained

SMT system. Using these generated target sentences to perform information retrieval

over the actual target side of the comparable corpus, target candidates are found, from

which final source-target pairs are then extracted taking into account different features

such as the word error rate or length discrepancies. This approach can be performed

iteratively. That is, after the pre-trained SMT system has been used to extract new

parallel data from the comparable corpus, it can be trained on these sentences, which

will further enhance the extraction accuracy in a later iteration. It can therefore be

considered a type of online extraction, much as we envision.

While Snover et al. (2006) exploit SMT translations to find additional parallel data,

España-Bonet and Barrón-Cedeño (2017) as well as España-Bonet et al. (2017) see po-

tential within interlingual representations found in multilingual NMT systems for

the task of parallel sentence extraction. Based on that idea, Grégoire and Langlais (2018)

train a siamese network (Bromley et al., 1993) on a pseudo-parallel corpus16, such that

its two encoders read in the source and target sequences. Their last hidden states are

then sent through a feed-forward neural network, which is trained to classify a pair of

hidden states as either being parallel or not. In later experiments, they use this trained

classifier to extract parallel sentences from an actual comparable corpus.

Similarly, Schwenk (2018) use the encoder of a pre-trained NMT system to embed

sentences into multilingual space, taking a threshold over the cosine similarity over these

sentence representations to extract parallel sentences, while Bouamor and Sajjad (2018)

use cosine similarity over the averaged word embeddings of each sentence to filter a list

of parallel sentence candidates.

Artetxe and Schwenk (2018) observe that cosine similarity of sentence representations

tend to be scaled differently, leading to some sentences without any true translations in

the corpus to have a generally high cosine similarity to many sentences, while some sen-

tences with a true translation have a much lower cosine similarity to their corresponding

translation. As such, they explored different margin-based scoring techniques that

would overcome the scaling problem of cosine similarity. (More in 3.2.)

The approach outlined by Schwenk (2018) or Artetxe and Schwenk (2018) are not

intended to be iterative, as the classifier is only trained once on parallel data before

the decoder is discarded and their extraction procedure commences. The idea of using

15The word error rate is a measure of how similar two strings are and takes into account any substi-

tutions, insertions or deletions between a tested string and its reference.
16A pseudo-parallel corpus is a corpus that consists of parallel sentences which have been shuffled

among each other —potentially with additional negative samples— to create non-parallel sentences.
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interlingual representations found within an NMT system, however, has the potential to

be useful in an iterative setup. When an NMT model is trained on a small amount of

parallel data and its resulting representations over a comparable corpus are used to detect

parallel sentences, training the system on these will potentially improve the system’s

performance and quality of the interlingual embeddings, leading to more accurate parallel

sentence extraction in later iterations. This process is the objective of our research and

shall be described in detail in section 3.

2.5.3 Exploiting Monolingual Data

Extracting parallel data from comparable corpora is one approach to using non-parallel

sources in order to improve low-resource NMT. An alternative approach that does not

rely on extraction decisions, is to train directly on ample amounts of monolingual data.

In order to include a language model (LM) trained on monolingual data only,

Gulcehre et al. (2015) suggest to concatenate the NMT decoder hidden states with

those of an RNN-based LM. While this improves the performance of both low and high

resource translation, the architecture of the fused NMT architecture and LM is complex.

NMT systems already condition the generation of a target word on its predeces-

sors, which should make the use of an additional LM avoidable. As such, one simple

yet effective technique to incorporate monolingual data during training, is to use back-

translation. A monolingual target language corpus can be machine translated into the

source language to create additional parallel data to train on. As the target language is

still an original sentence from the monolingual corpus, the systems fluency and overall

performance is improved (Sennrich et al., 2016a). However, the quality of the pseudo-

parallel training data generated in such a setup depends largely on the existence of a

decently trained auxiliary MT (possible SMT) system. Applying a method that is inde-

pendent of such auxiliary models, Currey et al. (2017) show that adding a simple target

sentence copying task also significantly improves fluency.

In order to include quality control when training on machine translated monolin-

gual data, He et al. (2016) created a reinforcement learning-based auto-encoding task,

where one MT model translates a monolingual sentence into the target, which is then

checked for fluency in the target language, before translating it back to the source lan-

guage using a different MT model. At the end, they check whether the original source

and the generated source are consistent and feedback is given to the two MT models.

While their setup improves significantly over the back-translation approach by Sennrich

et al. (2016a), its smallest tested model still required hundreds of thousand of parallel

sentences.

Having no parallel data at hand, Irvine and Callison-Burch (2016) combine existent
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bilingual dictionaries and dictionary induction techniques on monolingual data to

create a word-by-word translation model and to improve the vocabulary coverage of a

low-resource SMT model. Initializing their system on a similar word-by-word transla-

tion model (Lample et al., 2018b) induced on monolingual data, Lample et al. (2018a)

train increasingly complex NMT models on monolingual data only by training them on

a denoising task as well as back-translated data of earlier models. Additionally, they

enforce the encoder to project the sentences in an interlingual space using a generative

adversarial network (GAN) structure, in which the model is rewarded when it manages

to trick a discriminator that tries to predict the encoded language. With this setting, the

unsupervised model learns to translate between a zero-shot language pair with supris-

ingly good accuracy.17 In a similar setup, Artetxe et al. (2018b) initialize their NMT

system with multilingual embeddings —learned from monolingual data and projected in

a common space— before using denoising and backtranslation to train an unsupervised

model.

Combining the idea of unsupervised multilingual embeddings with the observation

that SMT systems generally outperform NMT systems when data is sparse, Artetxe et al.

(2018a) train cross-lingual embeddings to induce a phrase table. In order to use this

phrase table in a standard PBSMT setup, it is combined with a LM and a distortion

model. The model’s weights are then iteratively tuned through a combination of mini-

mum error rate training and backtranslation, yielding a purely unsupervised approach.

In a similar fashion, Lample et al. (2018c) apply embeddings-based initialization, lan-

guage modeling and back translation for both PBSMT and NMT, with their combined

PBSMT-NMT model being the current state-of-the-art in unsupervised MT.

2.6 Domain Adaptation

A very related field to low-resource MT is domain adaptation. As general parallel cor-

pora are already sparse for most language combinations, the availability of adequate

in-domain data is especially meager. In order to adapt MT models towards the domain

of interest despite the lack of in-domain data, several approaches emerged. Applying

backtranslation, an existing MT model trained on a general corpus, can be used to

translate monolingual in-domain corpora, which can then be used as additional training

data (Schwenk, 2008; Sennrich et al., 2016a). In case the language pair is generally

low-resourced, such that general MT models do not produce sufficient quality transla-

tions, human post-editing is required (e.g. Nisarg et al. (2018)), which quickly becomes

costly.

17They report that “on the WMT dataset we [they] can achieve the same translation quality of a similar

[neural] machine translation system trained with full supervision on 100,000 sentence pairs.”(Lample

et al., 2018a)
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An alternative approach is to select in-domain sentences from large general corpora

using statistical methods, such as extracting sentences from a general corpus which

have a low cross-entropy with an in-domain LM (Axelrod et al., 2011). Similarly, in-

domain sentence pairs can also be extracted from comparable corpora. For this, Rauf

and Schwenk (2011) use an IR-based approach where back-translated sentences are used

as queries over a comparable corpus to obtain similar sentences, while Barrón-Cedeño

et al. (2015) use a variety of text similarity measures.
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Chapter 3

Online Parallel Data Extraction

In the previous section we have introduced various methods towards parallel sentence

extraction. In España-Bonet et al. (2017); Schwenk (2018); Artetxe and Schwenk (2018)

etc., it has been shown that similarity measures over interlingual sentence representations

that can be found within sequence-to-sequence NMT systems can be used to identify

parallel sentences in comparable corpora.

Yet, all of the above systems dispose of their classifiers once enough data has been

collected to train a separate NMT system. However, España-Bonet et al. (2017) has

empirically shown that sentences which are translations of one another tend to move

towards each other as training progresses. As representations of translations move closer

to each other in the multilingual space, the confidence of them being parallel grows,

yielding a better classifier.

The premise of online parallel data extraction is therefore that NMT systems —

either sequence to sequence models with RNNs, transformers, or any architecture based

on encoder-decoder models— already learn strong enough representations of words and

sentences to judge on-line if an input sentence pair is useful or not. Starting with an

NMT system that has been initialized —either via pre-trained word embeddings only

or by pre-training the model on a small parallel corpus— first sentences are extracted

from a non-parallel corpus. Whenever enough sentences have been selected to create a

batch, a train step is performed. Embeddings are modified by back-propagation. This

again improves both the translation quality and the internal representations, which also

leads to a better classifier which can find more parallel sentences with higher confidence.

As such, as we train and extract in a loop, both tasks enhance each other, leading to

better extraction and translation quality. Notice that the extracted pairs differ through

iterations, since it is the sentence representation at the specific training step that is

responsible for the selection.
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This approach also resembles self-supervised learning (Raina et al., 2007; Bengio

et al., 2013), i.e. learning a primary task (PT) where labeled data is not directly available

but where the data itself provides the supervisory signal for another auxiliary task (AT)

which lets the network learn the PT. Often, the PT involves representation learning, as

is the case with the multilingual representations found in NMT systems. In the case of

our online-extraction approach, the learning approach comes with a twist: Extracting

cross-lingually close sentences comes as an AT for learning MT and learning MT comes

as an AT for finding cross-lingually close sentences in a mutually self-supervised loop; in

effect a doubly virtuous circle.

3.1 Sentence Representations

Semantics of words and sentences can be represented in a variety of ways. In our case,

we rely on so-called distributed semantics. It relies on the idea that words that occur

in similar contexts tend to have similar meanings. Or as Frege proclaims more radically:

“Nur im Zusammenhange eines Satzes bedeuten die Wörter etwas. [Only in the

context of a sentence do words have meaning.]” (Frege, 1884)[§62]

The sentence representations we focus on can also be regarded as being composi-

tional, as they are based on underlying word representations which were composed in

a certain way to yield the sentence representation. However, for our purposes there are

several composition methods available used to obtain sentence representations, rang-

ing from taking the sum or the mean (España-Bonet et al., 2017) or performing max-

pooling (Schwenk, 2018) over encoder outputs, over taking the last hidden state of a

BRNN (Grégoire and Langlais, 2018) to calculating the average of the word embeddings

(Bouamor and Sajjad, 2018).

Our experiments are based on the composing method defined by España-Bonet et al.

(2017) due to its strong empirical foundation. Instead of focusing on solely one repre-

sentation type found in encoders, a focus is taken on two different embedding spaces to

build semantic sentence representations. Namely, the sum of the word embeddings (Ce)

and the hidden states of an RNN or the encoder outputs of a transformer (Ch):

Ce =

T∑
t=1

et (3.1)

Ch =

T∑
t=1

ht (3.2)

where et is the word embedding at time step t and ht its hidden state (RNN) or
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encoder output (transformer). In case ht is an RNN hidden state, it is further defined

by the concatenation of its forward and backward component hRNNt = [
−→
h t;
←−
h t]

Both representation types are of interest, since they have different modeling capa-

bilities. As Ch is based on the processed sequence of the encoder, where each component

at a time-step is influenced by its surrounding time-steps, it is capable of modeling these

rather fluid dependencies. Also, as they are usually randomly initialized at the beginning

of training, their values usually do not yet contain extreme-values. That makes them

easier to adapt to the training data and overall gives them a more flexible nature (see

4.2.2.1). On the other hand, each word-embedding used to compose Ce is not context-

dependent, which leads to a more discrete representation in Ce. Additionally, when Ce

is already pre-trained, it contains more larger-valued entries, which makes them slower

to adapt via gradient-descent, which results in Ce being more rigid over the epochs.

Lastly, when Ce is pre-trained, it finds much more parallel candidates at the beginning

of training compared to Ch, making it more permissive at that point. (See 4.2.2.1 for a

detailed discussions)

3.2 Scoring

In order to find translations among all the possible n × m combinations of source-

target sentence pairs, a scoring function is needed. We explore two such functions in

experiments I.

Let SL1 and SL2 be the vector representations for each sentence of a pair (either Ce

or Ch). The cosine similarity of a sentence pair is then calculated as:

sim(SL1, SL2) =
SL1 · SL2
||SL1||||SL2||

(3.3)

After calculating the cosine similarity over all possible source-target combinations, a

hard-threshold over the scores could be used to determine whether a sentence pair should

be accepted or not. However, this threshold is not straightforward and depends on the

language pair and the corpus (España-Bonet et al., 2017). Additionally, the measure

might scale differently for different sentences (Artetxe and Schwenk, 2018). This leads

to some sentences having a high cosine similarity with many non-translations, while true-

translations might have a comparatively low cosine-similarity with one sentence. Three

possible reasons that come to mind are:

1. Especially at the beginning of training, the semantic representations are often

sparse. Even if word-embeddings are pre-trained, some words in the corpus used
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to train the embeddings might not have been frequently used in the same context

as in the corpus used for training the NMT system. If a word did not appear in

the embedding training corpus at all, its embedding is randomly initialized close

to 0. When now taking the cosine similarity between such sparse representations,

the cosine similarity will be high to many other randomly initialized embeddings,

making them difficult to keep apart.

2. The above is enforced by the problem that word-embeddings commonly used within

NMT systems (word2vec etc.) cannot model polysemy. When now taking the

cosine similarity between such unadapted representations, it can lead to high-values

where they would usually not be expected by a human observer.

3. Word-embeddings usually do not have zero-mean and are anisotropic. That is,

the variance of the representations is not the same over all dimensions. In fact,

often most of the variance is accounted for in a low dimensional subspace of the

representations, making the values in all other dimensions very close to each other

(Mu and Viswanath, 2018). Initializing the NMT model with pre-processed word

embeddings that are isotropic with zero-mean might help alleviate the problem of

scalability when using cosine similarity.

To overcome the problem of scalability, Artetxe and Schwenk (2018), proposed a

margin-based function:

margin(SL1, SL2) =
sim(SL1, SL2)

avgNNk
(SL1, Pk)/2 + avgNNk

(SL2, Qk)/2
(3.4)

where avgNNk
(X,Yk) corresponds to the average similarity between a sentence X

and NNk(X), i.e. its k nearest neighbors Yk in the other language:

avgNNk
(X,Yk) =

∑
Y ∈NNk(X)

sim(X,Y )

k
(3.5)

This scoring method penalizes sentences which have a generally high cosine similarity

with several candidates. Consequently, it highlights sentences which have a relatively

high cosine similarity with one candidate, while maintaining low scores with all others.

Following Artetxe and Schwenk (2018), all our experiments using the margin-based

scoring function use k = 4.

However, since this function takes into account the k-nearest neighbors of each sen-

tence, small input documents lead to scarce information of a sentence’s relation to can-

didate translations. This makes the function less reliable for very small documents,
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Figure 3.1: Main sentence selection method. First, two sentence representations of

a sentence, Ch and Ce, are extracted. For each representation type, the top-scoring

target sentence for each source sentence and vice versa are found. Only pairs that have

been ranked as top-candidate pairs in both directions and both representation types are

accepted as parallel pairs and collected for training. Whenever enough parallel sentences

are extracted to create a batch, a train step is performed.

potentially accepting sentences with poor representations as good candidates simply

due to this statistical uncertainty. Merging small documents into lots of at least 15

sentences per language is enough to solve this problem.

3.3 Filtering

After having scored all possible source-target combinations, it is important to filter for

possible translations. In the following, four different filtering methods are introduced.

In all of them, sim(SL1, SL2) and margin(SL1, SL2) can be used for scoring.

1. Threshold Dependent. The highest scoring target for each source sentence

(pair i) as well as the highest scoring source for each target (pair j) for either

representations S = Ch or S = Ce (systems H and E respectively in the following

experiments) are identified. Since in general it is possible that the top target for

a source sentence does not have the source as its top candidate and vice versa

(i 6= j), this process is not symmetric. Only pairs that have been matched during

selection in both language directions are accepted to the candidate list.1 This first

intersection is the primary filter, as it performs a first selection of source-target

pairs, removing the majority of unwanted combinations.

After having matched pairs, a threshold can be used to filter out additional false

positives. It can therefore be seen as the secondary filter for the single representa-

tion systems H and E. However, such a threshold is an additional hyperparameter

to tune and varies strongly with the corpus, model architecture and initialization

techniques used.

1This differs from the approach in Artetxe and Schwenk (2018) in the fact that they use the union

between pairs i and j, while here the intersection is used.
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Figure 3.2: The system with low permissibility (left) accepts sentences which are top-

candidates in both language directions. With medium permissibility (middle), Ch is

loosened to also accept sentences which are in the top-2 in the source-to-target direction

and a top candidate in the opposite direction. In the high permissibility setting(right),

this process is symmetric.

2. Low Permissibility. Called system P as it is supposed to favor extraction pre-

cision. It uses the same methodology as the threshold independent approach, but

uses both representations S = Ch and S = Ce. Only pairs that have been matched

during filtering in both language directions (primary filter) and both representation

types are accepted to the candidate list. The intersection between representation

types can thus be seen as the secondary filter for this dual-representation system.

As described in 3.1, Ch and Ce have different modeling capabilities and as described

in 4.2.3 also evolve differently as training progresses. Thus, the two representation

types turn out to be complementary and this further restriction allows to get rid

of the threshold, and the sentence selection becomes parameter-free.

3. Medium Permissibility. The combination of representations as in system P

is a key point for a threshold-free method, but the final selection becomes quite

restrictive. In order to increase recall (thus named system R), a more permissive

way of selecting pairs should be considered. Instead of taking only the highest

scoring target sentence for each source sentence, the top-n are selected (all model

R systems in our experiments use n = 2). Both representation types are still used.

The number of candidates considered is only extended for S = Ch since it is the

most restrictive factor at the beginning of training.

4. High Permissibility. Generalization of the previous strategy where the method is

symmetric in source-target in S = Ch and S = Ce. See figure 3.2 for an illustration

of the different levels of permissibility when filtering.
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Chapter 4

Experiments

In this section, the experiments performed to explore different versions of our online

parallel sentence extraction system in a variety of situations (unsupervised vs. semi-

supervised) and applications (low-resource MT and filtering) are presented. Apart from

reporting the usual translation results, we also perform some in-depth analysis of the

representations and the extraction itself, as well as a qualitative analysis of a sample

document.

4.1 Data

We use a wide variety of data for extraction, NMT and embedding training, as well as

NMT development and testing.

4.1.1 Parallel Corpora

English-French: For all English-French models in experiments I and II, the English-

French version of newstest2014 and newstest2013 is reserved for testing, while new-

stest2012 is used for development. At training time, a pre-processed version (see

4.1.4) of the development data is used. The test data is not preprocessed and used as is,

except for a tokenized version to calculate tokenized BLEU scores. As can be deduced

from the name, newstest corpora are of the news domain. For this, news articles of a

source language have been manually translated into the target language.

In order to create more complex pseudo-comparable corpora for the control experi-

ments —which are further described in 4.2.3 and 4.3.3— English-French europarl (EP)

is preprocessed and used as a rounded complete version (EP complete) of 1.9M sen-
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tences. The top 500k pairs from EP (EP base) are used as a base corpus to explore a

different type of initialization. The EP corpus contains parlamentary speeches which are

translated into several European languages. It is therefore not in the same domain as

newstest.

English-German: For the filtering experiments in 4.4.2, the English-German ver-

sion of newstest2014 is used for testing and newstest2012 is used for development. The

corpus to be filtered is the ParaCrawl corpus (BiCleaner v. 3.0). This is a corpus based

on parallel data that has been crawled from the web and therefore contains both valuable

and less valuable pairs for NMT training, all while covering a variety of domains.

English-Gujarati: For the English-Gujarati experiments in 4.4.1, we use the con-

catenation of several parallel corpora. Firstly, the bible corpus1 is a multilingual corpus

of bible translations. Further, two corpora specially made for WMT20192 are used,

namely a crawled corpus (WMT19 Crawl) and a localisation corpus extracted from

OPUS3 (WMT Localisation). Lastly, the Translation Quality Estimation (TQE) dataset

for Indian languages (Nisarg et al., 2018), which is basically the concatenation of two cor-

pora by the Indian Languages Corpora Initiative, which focus on the health and tourism

domain each. For development, we use the first 999 sentences from the English-Gujarati

version of newsdev2019, and for testing we reserve the last 999 sentences. Further, we

also report results on the final newstest2019 corpus.

The final sizes of the data sets can be seen in 4.1.

4.1.2 Wikipedia

The main objective of the following experiments is to explore online sentence extraction

on non-parallel corpora. For this purpose, non-parallel corpora are needed. Monolingual

corpora exist in abundance in the form of monolingual web-content. However, in order

to calculate the margin-based score over a pair of monolingual corpora, all possible

sentence combinations must be taken into account. To avoid the n × m explosion of

possible combinations of sentences, where n is the number of sentences in L1 and m

in L2, the usage of comparable corpora —where aligned documents are of similar

topics— is preferable. With topic-aligned documents, the complexity of the search space

is reduced to
∑

s,t∈D ns×mt, where D = S, T are the topic-aligned documents. That is,

only all possible source-target sentence combinations within two aligned documents are

considered. This way, all the parallel sentences in non-linked documents are lost, but a

major gain in speed is achieved.

Wikipedia (WP) is a popular source for comparable documents. In order to use

1http://christos-c.com/bible/
2http://www.statmt.org/wmt19/translation-task.html
3http://opus.nlpl.eu/
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L1/L2 sentences L1 tokens L2 tokens

EP complete en2fr 1.900.000 56.029.854 61.603.298

EP base en2fr 500.000 12184755 13.293.730

ParaCrawl BiCleaner v.3.0 en2de 31.078.104 785.158.762 758.536.137

Bible en2gu 7.807 260.859 265.188

WMT19 Crawl en2gu 10.650 272.559 193.804

WMT19 Localisation en2gu 107.637 1.101.131 1.025.859

TQE en2gu 50.000 1.213.204 1.055.673

newstest2012 en2fr 3.003 80.044 90.027

newstest2012 en2de 3.003 72.929 72.603

newstest2013 en2fr 3.000 64.807 73.659

newstest2014 en2fr 3.003 71.139 81.095

newstest2014 en2de 3.003 67.612 63.073

newsdev2019 dev en2gu 999 25.866 23.072

newsdev2019 test en2gu 999 29.800 27.148

newstest2019 en2gu 996 24.046 21.673

newstest2019 gu2en 1.016 15.380 17.885

Table 4.1: Size of the parallel corpora in number of sentences and tokens. The values

for both newstest2013, newstest2014, newsdev 2019 test and newstest2019 corpora are

calculated from the tokenized version used for evaluation.

it for the following experiments, the WP dumps4 for English (en), French (en) and

Gujarati (gu) are downloaded and later pre-processed as described in 4.1.4.

WP dumps are used for two different purposes: (i) to calculate initial word embed-

dings and (ii) as a corpus to extract parallel sentences from and train the NMT systems.

In the first case, the complete WP monolingual editions are used. In the second case,

only the subset of articles that can be linked across languages using Wikipedia’s langlinks

are extracted. That is, an article is only taken into account if there is the equivalent ar-

ticle in the opposite language. For these purposes, we use WikiTailor (Barrón-Cedeño

et al., 2015)5 to get the intersection of articles of both languages.

We additionally use a en–gu WP reference which was automatically extracted for

the 2019 WMT news task. As it is an automatically extracted corpus, many parallel

sentences from the original en–gu linked WP articles may not be included in this corpus.

However, it suffices as a subset of the parallel data in the linked WP to compare our

extraction method with.

4WP editions downloaded from https://dumps.wikimedia.org/. The data for WP en, fr , en–fr is

based on a 2014 dump, while gu and en–gu uses one from 2019.
5https://github.com/cristinae/WikiTailor
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L1 L2

Sentences Tokens Sentences Tokens

WP Edition en 92.267.566 2.247.575.834 – –

WP Edition fr 26.595.585 652.265.253 – –

WP Edition gu 4.280.531 74.895.331 – –

WP Comparable en− fr 12.288.721 318.201.381 8.027.123 207.049.147

WP Comparable en− gu 546.924 15.483.274 143.120 3.100.463

WP Reference en− gu 18.033 415.831 18.033 520.680

Table 4.2: Size of the WP editions, comparable corpora and en-gu reference.

en

Sentences Tokens

NewsDocs en 176.220.479 4.012.454.770

NewsDocs de 220.443.585 4.426.695.303

CommonCrawl gu 3.729.406 67.426.200

NewsCrawl gu 244.919 3.341.161

Table 4.3: Number of sentences and tokens of monolingual data after preprocessing.

The final sizes of the WP-based corpora can be observed in table 4.2.

4.1.3 Monolingual Corpora

The following monolingual corpora were used mainly as additional data for training word-

embeddings in en, de and gu. For English and German, we use the concatenation of

NewsCrawl from 2014, 2017, and 2018 (NewsDocs), which is a collection of monolingual

news articles. For Gujarati we use the 2018 version of NewsCrawl and CommonCrawl,

which is a crawled corpus of various contents. The final sizes of the corpora after pre-

processing can be seen in table 4.3.

To further increase the available data size for training Gujarati embeddings as well

as to add similar content to the English word embeddings to be mapped with Gujarati,

additional Gujarati news pages were crawled. This yielded an increase of about 2M

monolingual Gujarati sentences. While crawling for the news articles, articles written

during the period from which the test corpus newstest2019 was created 6 were not

included in the creation of these data sets. The number of sentences and tokens extracted

from each news outlet is shown in table 4.4.

6September-November 2018
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Sentences Tokens

Divya Bhaskar gu 563.072 17.759.753

News18 en 460.097 17.453.729

News18 gu 193.455 5.177.957

Gujarat Samachar gu 121.349 3.521.586

Sandesh gu 892.196 24.102.572

Zeenews en 466.449 17.273.255

Zeenews gu 244.191 6.624.527

Table 4.4: Number of sentences and tokens of news articles crawled from various news

outlets.

4.1.4 Preprocessing

English/French/German: All English, French and German corpora (excluding the

evaluation corpora) undergo the same pre-processing. After being sentence split, the

corpora are normalised, tokenised and truecased using standard Moses scripts (Koehn

et al., 2007). A byte-pair-encoding (Sennrich et al., 2016b) of 100k merge operations

trained jointly on en-fr or en-de data respectively is applied accordingly. Duplicates

are removed and sentences with more than 50 tokens are discarded. In order to en-

able a multilingual setup, language tokens indicating the designated target language are

prepended to each source sentence. For example, as the English-French setting is bilin-

gual, this simplifies to each French sentence starting with the language token <en>, and

each English sentence with <fr>.

Gujarati: Gujarati corpora are normalized and romanized using the Indic NLP

Library7. The romanized corpora are then tokenized using Moses. As the romanization

is case sensitive, no true-casing is performed. At the end, a BPE of 40k merge operations

trained on both English and Gujarati data is applied to all en and gu corpora involved

in experiments IV.

4.1.5 Cross-Lingual Embeddings

For all unsupervised experiments, we initialze the models using cross-lingual embeddings.

These are trained using monolingual data only.

The initial monolingual embeddings (of size 512) are trained using word2vec8. The

two embeddings are then projected into a common multilingual space using vecmap9

7https://github.com/anoopkunchukuttan/indic_nlp_library
8https://github.com/tmikolov/word2vec
9https://github.com/artetxem/vecmap
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(Artetxe et al., 2017) . We extract all numerals that occur in both monolingual corpora

in order to supply a small seed dictionary for training that is not linguistically motivated.

After having projected the embeddings into the same space, they are merged into a single

cross-lingual embedding. Whenever a word in the two languages is a homograph, one of

the two was chosen randomly.

4.2 Experiments I: Unsupervised Learning

The following experiments make up the core work of this thesis project. They have been

designed to explore various components that make up the online-extraction framework:

the two scoring functions, different combinations of the two representation types and

the filtering technique. All experiments are performed using LSTM’s and transformer

models. This results in a total number of 10 models, whose specifications are described

in detail in the following section.

All models in this set of experiments are initialized using pre-trained cross-lingual

word embeddings trained on the en and fr WP editions as described in 4.1.5.

Having initialized the NMT systems with the pre-trained word embeddings, the

linked English-French WP articles (WP Comparable) are used as a comparable corpus

to extract and train from. Only source-target combinations within two linked articles are

considered. Since the number of available WP corpora for English and French is large,

articles shorter than 15 sentences are excluded from training to avoid the statistical

uncertainty issue described in 3.2. This results in 12M and 8M of available sentences

for English and French respectively, as reported in table 4.2. However, in a low-resource

case, it is advisable to cluster smaller corpora into lots of at least 15 sentences, in order

not to lose the parallel sentences contained in them.

4.2.1 Model Specifications

The architecture described in 3 is implemented on top of the Open-NMT toolkit (Klein

et al., 2017) both for RNN and Transformer encoders. In order to explore the different

scoring functions, representation types and filtering techniques, the following models are

trained:

• LSTM: 1-layer bidirectional encoder with LSTM units, additive attention, 512-

dimensional word embeddings and hidden states, and an initial learning rate (λ)

of 0.5 with SGD.

– LSTMsimP: Ce and Ch are both used as representations in the low permis-

sibility mode. sim(SL1, SL2) is used as the scoring function.
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– LSTMmargP: Ce and Ch are both used as representations in the low permis-

sibility mode. margin(SL1, SL2) is used as the scoring function.

– LSTMmargR: The same as LSTMmargP but Ch is used in the medium

permissibility mode.

– LSTMmargH: Ch is used as the only representation type. It uses the low per-

missibility mode and margin(SL1, SL2) for scoring. The extraction threshold

is set to 1.002 and is determined empirically after observing the margin-based

scores of a small portion of the training corpus.

– LSTMmargE: The same as LSTMmargH, but where Ce is used as the only

representation type. The threshold is set to 1.3.

• Transformer: 6-layer encoder-decoder with 8-head self-attention and 2048-dim

hidden feed-forward layers. Adam optimization with λ = 2 and beta2 = 0.998;

noam learning rate decay (as defined in (Vaswani et al., 2017)) with 8000 warm-up

steps. Labels are smoothed (ε = 0.1) and a dropout mask (p = 0.1) is applied. As

is common for transformers, position encodings and Xavier parameter initializa-

tion (Glorot and Bengio, 2010) are used. All sub-models described in the LSTM

category (simP, margP, margR, margH, MargE) also exist for the transformers.

As for the single representation models that require a threshold, these have been

set to the following values.

– TransformermargH: θ = 1.01

– TransformermargE: θ = 1.0

4.2.2 Results and Discussion

The final translation quality of the models described in the previous section can be

observed in table 4.5. The models are compared to current state-of-the-art unsupervised

NMT and NMT+SMT systems.

The best performing model is TransformermargP, which with a BLEU score of 29.21

for en2fr and 27.36 for fr2en outperforms all other unsupervised NMT models by about

12 BLEU points and more. Also when comparing it to more complex unsupervised NMT-

SMT systems such as Lample et al. (2018c), its translation quality on newstest2014 is

comparable. This is despite training on an out-of-domain corpus only 4.7% of the size

of the in-domain NewsCrawl corpus used to train the unsupervised NMT-SMT system.

Nevertheless, Lample et al. (2018c) use monolingual data only. Whether it is easier to

collect several hundred millions of monolingual sentences or some ten million sentences

within comparable documents really depends on the language combination, domain and

task. Therefore, both systems should be considered as being the better choice for distinct

situations.
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Corpus, BLEU

Reference en+fr sent. en2fr fr2en

(in millions)

Unsupervised NMT

Artetxe et al. (2018b) NCr13, 99+32 15.13 15.56

Lample et al. (2018a) WMT, 16+16 15.05 14.31

Yang et al. (2018) WMT, 16+16 16.97 15.58

Experiments I

LSTMsimP WP, 12+8 10.48 10.97

LSTMmargE WP, 12+8 13.71 14.26

LSTMmargH WP, 12+8 21.50 20.84

LSTMmargP WP, 12+8 23.64 22.95

LSTMmargR WP, 12+8 20.05 19.45

TransformersimP WP, 12+8 25.21 24.96

TransformermargE WP, 12+8 27.33 25.87

TransformermargH WP, 12+8 24.45 23.83

TransformermargP WP, 12+8 29.21 27.36

TransformermargR WP, 12+8 28.01 26.78

Unsupervised NMT+SMT

Artetxe et al. (2018a) NCr13, 99+32 26.22 25.87

Lample et al. (2018c) NCr17,358+69 28.10 27.20

Table 4.5: BLEU scores achieved by the unsupervised en-fr models on newstest2014

calculated with multi-bleu.perl. Training corpora differ by various authors: News Crawl

2007–2013 (NCr13), 2007–2017 (NCr17), the full WMT data and Wikipedia (WP).

As for the models of this experiment, Transformer models generally outperform their

LSTM counterparts, which is to be expected. Also, margP models outperform margR

models. This may be surprising given the idea that margR is more permissive in its

filtering and should thus find more pairs to train on. The reasons behind this final

outcome are therefore discussed in detail in the following sections focusing on extraction

and sentence representations.

Both single representation models margE and margH have different outcomes for

transformers and LSTMs. While margE outperforms margH for transformers, this is

inverted for LSTMs. However, as these models are dependent on setting a threshold

manually, there is a large variance on what the translation performance of a margE

or margH model can be. It is therefore not possible to say that either one of the two

is superior to the other, as they are simply not directly comparable. However, what

we can see from this is that single representation models can perform on similarly high

levels as dual-representation models —such as margR or margP— if their threshold is set
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Unique Accepted Sentence Pairs

System LSTM Transformer

MarginP 1.310.920 2.021.198

MarginR 1.198.977 2.317.057

MarginE 432.314 2.393.147

MarginH 3.002.861 4.893.424

SimP 654.349 743.141

Table 4.6: Total number of unique sentences extracted during training of each unsuper-

vised en-fr model.

appropriately (see for example LSTMmargH and LSTMmargR). However, the threshold

exploration is time consuming and it is not guaranteed that an optimal threshold is

found.

Lastly, there is a large divergence between LSTMsimP and its transformer coun-

terpart. While the LSTM version is far behind most other LSTM models applying

the margin-based scoring function, TransformersimP even outperforms TransformermargH.

This is a surprising result and will be discussed in detail in the next section.

4.2.2.1 Unique Accepted Sentence Pairs and Similarity Distributions

The extraction capacities differ with the model architecture (LSTM or transformer) and

technique. When examining the number of unique sentence pairs a model extracts over

the epochs until convergence, certain tendencies can be observed (see 4.6).

• Transformers vs. LSTM: Firstly, transformers consistently extract more unique

sentence pairs during the course of training. This may be due to their generally

higher modeling capacities, which also reflects in their generally superior per-

formance in translation.

When examining in figures 4.2 and 4.3 how the resulting similarity scores of all

rejected and accepted sentences are distributed over the epochs, and comparing

LSTM and Transformer models, we can see that the LSTM models do not alter

their score distributions as drastically as transformer models do. That is, as train-

ing progresses, the LSTM changes and adapts its representations less and much

slower. The transformer, on the other hand, generally learns to push rejected sen-

tence pairs apart, while accepted sentences move towards each other. This can be

seen at the growingly gentle slopes on the opposing sides of the accepted-rejected

spectrum. This trend can also be observed in figure 4.1, where many LSTM models

never reach the same difference in mean scores as their transformer counter parts
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(see figures 4.1b, 4.1d, 4.1e). This underlines the observation that transformers

learn stronger representations that are useful for parallel sentence extraction.

• Margin-based vs. cosine: Further, models that use the margin-based scoring

function margin(SL1, SL2), generally extract significantly more than those models

that use cosine similarity (SimP). This can be explained by the problem of scale

that cosine similarity faces (see 3.2), which makes sim(SL1, SL2) less reliable for

the task of identifying possible translations. Therefore, it accepts enough false

positives at an early stage during training, leading to degraded representations

and thus ever less reliable extraction decisions in the future.

This can very well be observed in figure 4.1e. While mostly all other models

learn to increase the accepted and rejected distributions by representing accepted

pairs closer to each other and rejected pairs further from each other as training

progresses, LSTMsimP does the opposite. At the beginning, there is a clear dif-

ference in the average cosine similarity of accepted and rejected pairs, but as the

epochs pass and the representation quality decays, the distinction between the

average cosine similarity of accepted and rejected sentences decreases. This can

be observed in more detail in figure 4.3d, where both rejected and accepted pairs

become increasingly similar, finally concentrating almost all pairs at very high co-

sine similarities. Quite opposite to its transformer counterpart, which decreases

its similarity scores. All of this makes the extraction decision less and less reliable,

finally leading to a low overall BLEU score for LSTMsimP.

On the other hand, TransformersimP finds more sentences than its LSTM coun-

terpart before converging. Interestingly, it does not have the problem of enclosing

accepted and rejected distributions, but it does take significantly longer to start

increasing the difference in average similarity between the two distributions (epoch

8 vs. epoch 3-4 as in most transformer models applying the margin-based score).

This can be observed in more detail in figure 4.3c. Here it becomes clear that both

accepted and rejected sentences become less similar to their candidate target as

training progresses, only that accepted pairs tend to become less similar slower

than rejected pairs. All of this indicates that the internal representations are af-

fected by the constant false positives that may enter during training due to the

error-prone cosine similarity, such that they inhibit accepted pairs from growing

closer to each other.

However, the number of true positives is not overwhelmed by the false positives and

enough useful pairs are accepted to slowly adapt the representations to the corpus

domain, leading to a steady increase of accepted pairs. This is quite different from

models applying margin-based scoring, in which accepted source-target pairs do

tend to become closer to each other, due to the smaller amount of false positives.

This is also reflected in the significantly higher BLEU score of TransformersimP

compared to its LSTM counter part. It shows comparable results to other Trans-

former models that apply the margin-based scoring function, despite it taking much
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longer to converge.

• Word-Embeddings only: LSTMmargE is the only model that collects less unique

pairs during training than the LSTMsimP model. However, for all single represen-

tation models it needs to be said that their performance in both extraction and

translation heavily depend on the hard-threshold that was initially set for the

extraction decision.

In the case of LSTMmargE, one might argue that the threshold of 1.3 was set

too high. When regarding the comparatively high but stagnant relevance of the

threshold in figure 4.4d, this suggests that in fact many sentences that pass primary

filtering —via the intersection of both language directions—, are then rejected by

the threshold. However, when observing figure 4.2f, we can see that the threshold

cut-off appeared before the similarity distribution of accepted sentences reaches

its peak. This suggests that using filtering via the intersection of both language

directions without the cut-off at 1.01 would not have yielded a major increase in

accepted sentences.

We could deduce that LSTM embeddings are less informative for our extraction

task than transformer embeddings, since the transformer counterpart did reach a

reasonably large amount of 2.4M unique extracted sentences despite using embed-

dings only. Nevertheless, also when looking at 4.1c, both TransformermargE and

LSTMmargE end up with the lowest difference in mean scores between accepted

and rejected pairs (approx. 0.15 vs. 0.25 or 0.3 for all other models). That is,

the pre-trained embeddings are not altered as strongly over the epochs as hidden-

state representations; they are rather rigid representations. All of this suggests

that —while transformer embeddings are superior to LSTM embeddings for our

purposes— using these as the sole information for the extraction decision is not

optimal.

Hidden-States only: Both models using hidden-states as their only representa-

tion type accept large numbers of unique pairs (3M for LSTMmargH and almost

5M for TransformermargH).

When looking closely at figure 4.3a, we can see that the threshold was set quite

high for TransformermargH, because the curve of accepted pairs from an early

epoch is cut off where it has already descended most of its trajectory. That means,

that the major part of the distribution of sentences that would have been accepted

without a threshold was cut-off. This leads to a very small number of accepted

sentences in earlier epochs, which can also be seen in figure 4.1d. As such, while

TransformermargH does not accept many sentences in the first two epochs due to

the high threshold, after accepting a few more pairs in epoch 3, the representations

have adapted enough to make a major jump of +2M unique accepted sentences in

epoch 4. This is interesting, because it shows that the model was able to overcome

the high threshold once the hidden-representations have adapted towards the few

sentences it trained on from the corpus, leading to a tipping point in training
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where the model is suddenly able to accept more and more sentences.

This may be due to the fact that hidden-representations are randomly initialized

at the start of training, carrying only very distorted knowledge of the pre-trained

word embeddings in them. As their initial values are closer to zero than the already

trained word embeddings —which might carry also extreme values— they are

easier to alter and adapt to the training data; they are flexible representations.

However, since not all accepted pairs are true positives, adapting quickly on them

and accepting increasingly more —possibly useless— sentence pairs results in a

decreased translation performance, which can be observed in table 4.5.

The same holds for LSTMmargH. Only that here the initial threshold of 1.3 was

not set high enough. This can be seen at the comparatively high amount of ac-

cepted sentences already in its first epoch (see figure 4.1d), which almost reaches

2M , surpassing all other models at the same point in training. This low threshold

shows its effect quickly, as too many false positives are accepted and the repre-

sentation quality is decayed, leading to enclosing accepted and rejected similarity

distributions.

All in all, a careful selection of the threshold is of course advised. Nevertheless,

as TransformermargH has shown, setting demanding thresholds is not a guarantee

against false positives entering in abundance, as hidden representations are quite

flexible and can push false positives over the threshold once a tipping point has

been reached. As such, it is also not optimal to rely on any of the two representation

types, Ch or Ce, only, as they are either too flexible (Ch) or too rigid (Ce).

• Dual representations: All models using both representation types for filtering

and the margin-based scoring function —namely margP and margR— show similar

trajectories when examining their number of unique accepted pairs (see figures 4.1a

and 4.1b). Firstly, transformers accumulate more unique pairs over the epochs than

their LSTM counter parts. Secondly, all of them —earlier (epoch 2 for LSTMmargP)

or later (epoch 4 for TransformermargR)— separate the similarity distribution of

their accepted and rejected pairs significantly. All in all, this is a very beneficial

behavior for extraction and is reflected as well in the relatively high BLEU scores

of these models. This is also achieved by combining the flexible hidden-states and

rigid word-embeddings, which together lead to strict extraction decisions without

a hard-threshold that could be overcome or simply set inadequately.

However, the difference between margP and margR being their permissiveness,

it is interesting to observe how the less restrictive model TransformermargR does

in fact accept more pairs than its high-restrictive counterpart TransformermargP.

However, the additional extracted sentences also contained more false positives,

which can be seen in the slightly lower BLEU score of TransformermargR. Given

that in the margR setting, the rigid word embeddings —which seem permissive at

the beginning of training due to their prior knowledge through pre-training— can

choose at most one top candidate during filtering, while the flexible hidden-states
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—somewhat restricted at the beginning but very permissive later in training—

get to choose up to two top-candidates for filtering. One can quickly see how

allowing the flexible counterpart to have the larger selection can lead to more false

positives. However, instead giving the initially permissive but overall rigid word

embeddings the larger choice might not lead to better extraction decisions due to

the embeddings comparatively lower capacity to adapt to the data.

4.2.2.2 Intersections: Direction vs. Representation

In the previous section, we have observed how many unique pairs have been extracted

by each system and how the representations change based on what is accepted. For

a positive change in the representations to happen, the system usually rejects about

99.99% of the combinations it sees and accepts only a very few select pairs to train on.

In this section we therefore want to give a special focus on those many sentences that

have been rejected.

As described in 3.3, there are different ways of filtering out unwanted sentence pairs.

All models use the intersection of the language directions —the primary filter— to

find pairs of interest, while rejecting all others. As their secondary filter, some models

—namely dual-representation models— additionally apply an intersection between the

two representation types Ce and Ch to filter pairs, while others —single representation

models— use a hard-threshold.

In figure 4.4, we can observe the percentage of sentences rejected by the primary filters

and the secondary filters of dual and single representation systems of both transformer

and LSTM architectures. Naturally, the weighing of the two filters are mirror images

of each other: When the secondary filter gains relevance, the percentage of rejections

performed by the primary filter goes down proportionally and vice versa. Note that

for dual representation models, the data used for visualizing the primary filter in these

graphs stems from representation Ch only.10

When examining the dual representation systems in figures 4.4a and 4.4b, we

can see that the patterns of the margP, margR and simP models are quite similar. This

shows that threshold-less filtering, using intrinsic features of the models, works in similar

ways regardless of the specific architecture of the sequence-to-sequence model. However,

for transformer models the impact of the secondary representation seems to be often-

times significantly higher —for simP for example about twice as high— compared to

their LSTM counterparts. This again underlines the observation that transformers de-

10This choice was made for dual-representation systems to visualize the logic that in a primary step, the

representations Ch are filtered by both language directions, accepting a small minority of combinations.

These are then further filtered via the intersection with Ce, which naturally underwent the same primary

filtering beforehand, but which is unseen here.
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velop more expressive representations that help them discern more and more (un)wanted

sentences as training progresses, making them more apt than LSTM representations to

filter out sentences that would otherwise be accepted according to the primary filter.

When concentrating on both margP models, we can see that the secondary filter

reaches a peak at epoch 2. This indicates that epoch 2 is an important event for the

extraction in margP models. In fact, in figure 4.1a we have seen that the same epoch

is responsible for a major increase of unique accepted pairs. One explanation when

regarding figure 4.4a is that by epoch 2, our flexible Ch is starting to adapt to the data,

identifying more interesting pairs to accept via primary filtering, while the primary filter

in Ce —the more rigid representation— is adapting slower to the new domain, which

leads the symmetric difference of the two representations in the secondary filter to be

proportionally larger compared to the previous epoch. Thus, the secondary filter gains in

relevance in the second epoch due to improved representations in Ch and a conservative

Ce. As Ce slowly adapts to the training data, the symmetric difference between the two

representation shrinks again slightly as the primary filtering of both representation types

accept more of the same sentences. This can be observed in the slightly sinking trend of

the secondary filter of margP in later epochs.

A similar pattern can be observed in the margR models. However, here the relevance

of the secondary filter is generally moved up compared to the margP model. Due to the

higher level of permissibility in margR, more sentences pass the primary filter of Ch,

which then leads to an enlarged symmetric difference to the low-permissibility Ce when

performing secondary filtering.

The simP models also have similar curves, only that they do not reach their critical

point until later during training (epoch 4 for TransformersimP and epoch 3 for LSTMsimP

in this case). This is also reflected in the sentence accumulation of both systems (figure

4.1e), where LSTMmargR makes a leap in numbers of unique accepted sentences during

epoch 3, while its transformer counterpart shows a very smooth and slowly growing

curve.

All in all, we can say that the rejections in dual representation models work via the

interplay of its two representations. When Ch quickly adapts to the training data,

Ce omits an explosion of accepted sentences due to its more rigid nature and different

modeling capacities. This careful behavior in earlier epochs allows for the representations

in both Ce and Ch to adapt on less false positives and therefore gives both representation

types time to learn relevant features. Once also the more conservative Ce representations

have adapted to the training data, the relevance of secondary filtering goes down slightly

as both representation types accept and reject similar sentences in primary filtering.

Now, compared to the rather homogeneous trends observable among the dual rep-

resentation models, single representation systems seem to be more variable. The

one model that especially catches the eye is the transformer of type margH, due to its
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zigzag of changing relevance of both filters. However, earlier we have already discussed

that the threshold for this model was initially too low, but that epoch 4 is marked as

the turning point where suddenly about 2M new sentences were accepted. One possible

explanation may be that by epoch 3, Ch has adapted enough on the training data to

show an increase in accordance between its two directions, letting more pairs pass the

primary filter. While a good portion of these sentences then also passed the threshold,

many of them did not, leading to an increased relevance of the secondary filter and a

peak at epoch 3. The newly accepted pairs, however, further altered the representations

in such a way, that by epoch 4, many more pairs were able to pass the threshold while

pushing down its comparative relevance for rejection. The critical point in epoch 3 can

therefore be seen as the harbinger of an increased number of accepted sentences passing

the threshold in a few train steps ahead.

Model LSTMmargH on the other hand, shows no significant sign of change in the

relevance of both filters. This is due to the threshold being set too low, as discussed

earlier in 4.2.2.1, which leads to most pairs that were accepted by the primary filter also

passing the threshold, making it close to irrelevant.

In 4.2.2.1 we have also seen that pre-trained embeddings as our Ce adapt slowly to

the training data, which is reflected here in the shallow curves of both margE models.

In figures 4.1c and 4.2e we can observe how TransformermargE manages to slowly adapt

the representations as the mean difference of the accepted and rejected distributions is

increased. In this slow but continuous change, the threshold grows slightly in importance

while staying close to stagnant otherwise. The threshold of its LSTM counterpart,

however, never truly grows in relevance, simply because it is already set to a large value.

This leads to it always rejecting a relatively high share of sentences ( 0.3%) as compared

to other models, leaving the slowly adapting embeddings almost no chance to overcome

the threshold and change the comparable relevance of the secondary filter.

To conclude, for the single representation models it can be said that as word embed-

dings are more rigid, margE models have a rather stagnant change in relevance of the

primary and secondary filters, while with the rather flexible representations of margH,

the change in relevance can also be similarly idle but also surprisingly dynamic depending

on how the threshold was set.

4.2.2.3 Qualitative Examples

In earlier sections we have discussed different quantitative features of the different models

trained within the scope of this experiment, and set up some hypothesis as an attempt

to explain the connection between different events during training and extraction. Now,

to give a more qualitative image of how the extraction performance changes over the

epochs, and which role each of the two representation types plays, we will focus on a single
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Ce only Ch only ∩

Epoch 0 3 (2) 5(2) 1(1)

Epoch 1 0 3(2) 8(8)

Epoch 8 1(1) 0 10(9)

Table 4.7: Sentence pairs accepted from the example WP article by either representation

Ce and Ch or their intersection ∩. Numbers in brackets indicate how many of the

accepted sentences were true positives. Pairs are only counted as true positives if the

two sentences are translations of each other without and additional information added

or missing on either side.

WP article talking about the charming Leopard Grouper. The article has been chosen

by chance11. This qualitative analysis focuses on our best-performing model, namely

TransformermargP. The main focus lies on the three most important points during its

training: The initialization phase having seen pre-trained embeddings only (Epoch 0),

the start of the second epoch in which extraction suddenly gains momentum as discussed

in 4.2.2.1 (Epoch 1) and at the end of training when having reached convergence (Epoch

8).

Looking at the article as a whole, one can say that it is almost parallel. However, the

French sentences often tend to cover the content of several English sentences or simply

add additional information to otherwise parallel sentence pairs, which makes extraction

especially difficult. However, the system coped very well with this article, as by the end

of training, only one parallel sentence was not identified and only one sentence which was

not completely parallel (due to additional content in the French sentence) was accepted

nevertheless.

When observing in table 4.7 the number of sentences accepted by either of the two

representation types Ce and Ch (primary filters) and their intersection (secondary fil-

ter), we can see that in the initialization phase many sentences passed the primary

filters, while only one the secondary filter. Especially Ch seems to be keen in accepting

pairs which are not necessarily parallel. This again confirms our previous observation

that when extracting with pre-trained word embeddings, Ce already has some initial

knowledge about the languages involved which helps it identify parallel sentences more

precisely (2/3 vs. 2/5 for Ch in this case). Due to its rigid nature, Ce acts as a damper

on the false positives accepted by Ch. Already at the end of the first epoch, both repre-

sentations start to align, extracting more pairs. By the end of the training, the system

has found almost all parallel sentences in the article, except for one which fails to be

accepted by Ch.

11It was the first article pair in the shuffled list provided to the systems for extraction that contained

any parallel sentences.
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Now, in order to gain some deeper insight into what kind of sentences the two repre-

sentation types accepted individually or in concordance, we will focus on the few select

sentence pairs in table 4.8.

Firstly, all the previously mentioned short sentences in English that have been com-

bined into longer French sentences do not pass any of the primary filters. As can be seen

in candidate pair a), not even the longer French sentence that semantically includes the

semantics of the short English sentence is accepted by any representation at any point

in training. One reason for the models certainty in rejecting this sentence combination

might be based on how the sentence representations used are calculated. Instead of

using the mean of each time step, the sum is taken, which indirectly adds length infor-

mation. This is because short sequences will on average have sentence representations

that contain lower values than those of long sequences. Therefore, this indirect length

information might have helped filter out this candidate pair despite the partial semantic

overlap.

The evolution that is seen in candidate pairs b) and c) is also interesting. Word

embeddings trained with word2vec might encounter difficulties when dealing with words

that modify nouns; so-called modifiers. This is because they often occur in similar —

possibly broad— contexts (e.g. a yellow/red/white rose/book/etc.). This is especially

true for words that rely on an extra-linguistic reference scale.12. This large amount

of descriptive adjectives (light brown, reddish, light green-gray, small red or dark etc.)

might be the reason why the system rejected both b) and c) with both representations,

while most other parallel sentences that were rejected by the secondary filter in epoch

0 at least passed the primary filter of one of the two representations. However, even

though the system only accepted one sentence in the first epoch, when starting epoch

2 it already correctly identifies b) as parallel based on what it has learned from other

articles. Representation Ch has also adapted enough to the data to accept c), but the

rigid embeddings Ce take longer to adapt, allowing the candidate pair to be extracted

later in training.

Candidate pair d) is the only pair that was accepted by both representation types

from the very beginning. It is therefore an important pair, as it constitutes part of the

first epoch that sets the ground work for adapting the representations towards the train-

ing data. It is easy to see why this sentence was easy to handle by both representation

types: It contains homographs that also represent the same meaning in both phrases.

The main examples being [cau@@, ¨ , V ]. It might seem irrelevant at first that some

BPE token is shared as well as a double occurance of V. However, as the vocabulary is

shared between the two languages and their embeddings initialized based on that vo-

cabulary, having the same tokens appear in a candidate pair has a strong effect on the

decision especially at the beginning of training. Similarly, it has also been observed that

12A large mouse is probably still smaller than small giraffe, for example. The scale used to give

meaning to the modifiers large and small depends on the type of entity that is being modified.
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(a) Unique pairs (margP) (b) Unique pairs (margR)

(c) Unique pairs (margE) (d) Unique pairs (margH)

(e) Unique pairs (simP)

Figure 4.1: The number of unique pairs extracted by each unsupervised en-fr system

as training progresses. The color map indicates the difference in the average score of

accepted and rejected pairs.
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(a) Similarity distribution (TransformermargP) (b) Similarity distribution (LSTMmargP)

(c) Similarity distribution (TransformermargR) (d) Similarity distribution (LSTMmargR)

(e) Similarity distribution (TransformermargE) (f) Similarity distribution (LSTMmargE)

Figure 4.2: Distribution of the similarity score for rejected and accepted pairs when

extracting from en-fr Wikipedia using different unsupervised models.
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(a) Similarity distribution (TransformermargH) (b) Similarity distribution (LSTMmargH)

(c) Similarity distribution (TransformersimP) (d) Similarity distribution (LSTMsimP)

Figure 4.3: Similarity distribution, part II. (Continuation of 4.2.)
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(a) Dual Representation Transformers (b) Dual Representation LSTMs

(c) Single Representation Transformers (d) Single Representation LSTMs

Figure 4.4: Percentage of sentence pairs rejected via the source-target direction inter-

section (top) and the secondary filter (bottom) of the unsupervised en-fr models. The

secondary filter is further defined as the representation intersection (dual-representation

systems) or the hard threshold (single-representation systems). A comparison between

transformers and LSTM models is made.
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Candidate Pair Epoch 0 Epoch 1 Epoch 8 Gold

Ce Ch ∩ Ce Ch ∩ Ce Ch ∩

a)

en: The mouth is big and has a superior position .

fr: Corps él@@ ancé , comprimé latér@@ alement ,

il se termine en pointe , la bouche est légèrement supérieure .

r r r r r r r r r r

b)

en: The body background coloration is light brown ,

reddish or light green-@@ gray .

fr: La couleur de fond du corps est be@@ ige clair ,

rouge@@ âtre ou gr@@ is-@@ vert clair avec des mar@@ br@@ ures .

r r r a a a a a a a

c)
en: The front sn@@ out is covered with small red or dark dots .

fr: Le mus@@ eau est const@@ ell@@ é de petits points noirs ou rouges .
r r r r a r a a a a

d)

en: The cau@@ dal fin is distinguished by two red to dark lines forming a

” V ” and another black line parallel to the top line of the ” V. ”

fr: La nage@@ oire cau@@ dale se particul@@ arise également par deux traits

obli@@ ques de couleur rouge à sombre formant un ” V ” ainsi que par un trait

noir parallèle au trait supérieur du ” V ” .

a a a a a a a a a a

e)

en: Ce@@ phal@@ op@@ hol@@ is le@@ opar@@ dus is carnivorous and its

diet consists mainly in small fishes and crustaceans , it ’s an ambush predator

fr: Les points caractéristiques de cette espèce , la différenci@@ ant notamment

de Ce@@ phal@@ op@@ hol@@ is uro@@ det@@ a , résident dans la présence

de deux taches noires sur la partie supérieure du pé@@ don@@ cule cau@@ dal .

r a r r r r r r r r

f)

en: It is proto@@ gy@@ nous hermaph@@ rodite ,

which means the female can evolved to male during its life .

fr: Il est her@@ m@@ aph@@ ro@@ dite proto@@ gy@@ ne , c’ est-à-dire que

l’ animal est d’ abord femelle à la maturité sexuelle puis devient mâle .

r r r r a r a r r a

Table 4.8: Example sentences extracted by either representation type Ce, Ch or their intersection ∩ at the end of epoch 0

(beginning of training), 1 and 8 (end of training) of TransformermargP. An English translation of the French sample sentences

can be found under 5 for reference. Note that @@ denotes a sub-word boundary as defined by our BPE encoding.
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sentences that contain numbers are especially popular for extraction in the first epoch,

simply due to them consisting of the same tokens.

In e) it is interesting to see how Ce acts as the damper on the decisions that

Ch takes at the beginning of training. As the two candidates, which are in fact not

parallel, contain many BPE homographs (Ce@@, phal@@, op@@, hol@@, is), these have

a strong effect on Ch, as they are treated similarly by the recently initialized encoder.

On the other hand, Ce can use its prior knowledge of the words it has seen during pre-

training on monolingual data to see that most of the other words in the two sentences

are semantically not similar enough to each other. Therefore, the sentence does not pass

the secondary filter and in later epochs —once Ch has been adapted to the data— is

never considered again.

Lastly, candidate pair f) was a tricky case for TransformermargP as it is never accepted

by both representations at once, even though it arguably could be considered as a true

parallel pair. Reasons for this might be the diverging BPE for one of the indicative

words (hermaph@@ rodite vs. her@@ m@@ aph@@ ro@@ dite). Also, while the semantic

of the two sentences is very alike, the phrasing is more concrete in the French version,

which specifies that l’animal est d’abord femelle à la maturité sexuelle puis devient mâle

[the animal is female at the beginning of its sexual maturity and then becomes male].

In the English sentence this is compressed to females can evolved [sic] to male during its

life. This semantic complexity is still hard to be captured by the representations, as the

pairs is sometimes accepted by either one of Ce or Ch but never both.

All in all, the hypothesis that were drawn earlier about the interplay of both repre-

sentation types (e.g. Ce being more rigid and adapting slower, stopping Ch to accept too

many false positives at the beginning of training etc.) are also observed in this concrete

example article. Further, we could observe the importance that homographs, such as

numerals and a concurring BPE encoding have in the first epoch. That is, how d) was

easily identifiable as parallel due to its homographs, and how f) was never extracted

possibly due to its diverging BPE of an indicative word.

In fact, when looking at the percentage of tokens accepted by TransformermargP

that are BPE subword units, numerals or other homographs in source and target (see

figure 4.5), we can observe that at the beginning of training these three groups are more

strongly represented than later in training. At the very beginning of training, almost

every fourth token in an accepted source sentence also appears in the matched target.

However, this also includes high-frequency punctuation, with approximately 34.54% (see

figure 4.6), which probably are little useful to identify possible parallel sentences since

they occur in close to every sentence. Nevertheless, ca. 23.62% are BPE subword

units and 6.58% numerals which are informative indicators of whether a sentence pair

should be extracted or not. This also explains the larger ratio of BPE subwords and

numerals in the first epoch as opposed to later in training. As training progresses, the
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Figure 4.5: Percentage of tokens consisting of BPE subword units, numerals or homo-

graphs found in pairs accepted by the two en-fr margP models in each epoch during

training.

sentence representations adapt to the data and do not rely as heavily on the occurrence

of homographs anymore. Another important group of words in the first epoch are named

entities, which also make up a large part of the homographs group.

All of this suggests that homographs, such as shared named-entities, a common BPE

encoding and shared numerals are an important factor at the beginning of training and

extraction. This raises the question of how an unsupervised model as the ones described

in this chapter will perform when working with two very distant languages, which do

not share many (useful) homographs due to diverging orthography or even scripts. In

4.4.1 we encounter such a setting, where a Gujarati-English model is trained in a very

similar setting as the English-French models in this set of experiments.

4.2.3 Control Experiments: Extraction Accuracy

Earlier, the translation accuracy and some of the statistics behind the representations

and their roles in extraction have been examined. However, as there is no underlying

ground truth of parallel sentences for the English-French Wikipedia, the actual perfor-

mance of the extraction in terms of precision, recall or f-score can not be calculated. In

order to get a vague idea of how the models performance is for parallel sentence iden-

tification, we use a pseudo-comparable corpus with similar technicalities as the original

WP corpus.
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Figure 4.6: Types of homographs found in the accepted pairs extracted by

TransformermargP during the course of its first epoch. The class others consists largely

of named entities and common words.

4.2.3.1 Design

4.2.3.1.1 Pseudo-Comparable Corpus

In order to create a pseudo-comparable corpus, we sample 1M parallel sentences from

the pre-processed EP complete. The rest of the sentences in EP are over-sampled and

then shuffled to create a larger number of negative samples.

The best performing model on WP —TransformermargP— extracted about 2M pairs

(4M sentences) from a bilingual corpus comprising approximately 20M unique sentences.

If we, for simplicity, assume it extracted optimally, 1 out of 5 sentences in en-fr WP

may have a parallel target pair. This yields a noise ratio of 1:4 parallel-negative samples.

This is reflected in the pseudo-parallel corpus by adding 4M negative samples, which

are then shuffled with the true pairs.

The mean lengths of WP articles in English and French are 70 and 46 respectively.

We therefore split the pseudo-comparable corpus into lots of 46, which means that each

lot contains approximately 9 parallel sentences. The English side is then augmented with

24 additional negative samples, to reach a total of 70 sentences. The actual noise-ratio

in each lot is therefore much higher than the optimistic case of 1:4, which gives a more

realistic setup while reflecting the average WP articles lengths.

While the length and noise statistics might be similar, the contents of the two corpora

diverges strongly. WP contains a variety of topics and it is not always as clear whether

a sentence pair should be considered parallel or not (as has been observed in section

4.2.2.3). In this pseudo-comparable corpus, however, the topic is parliamentary speech,
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(a) Accepted EP pairs by TransformermargP (b) Accepted EP pairs by TransformermargR

Figure 4.7: Number of unique sentences accepted by the secondary filter (dual) and the

single representations Ce and Ch of both models used for the unsupervised en-fr control

experiments.

and while the topic is always constant, the difference between true and negative samples

is more clear.

4.2.3.1.2 Models

We focus on the two best-performing models, TransformermargP and TransformermargR,

also to observe whether margR models can truly be thought of as high recall but medium

precision and margP as high precision but medium recall as introduced earlier. Similarly

as before, the models are initialized on the same pre-trained multilingual word embed-

dings used in the main experiments. The models are then used for joint extraction and

training on the pseudo-comparable corpus.

4.2.3.2 Results

We calculate the precision and recall of the two models in two different ways; by epoch

(unique) and considering the whole training process as a whole (accumulated). Where

the accumulated scores are given for a specific epoch, the extracted data up to and

including that epoch are treated as one corpus and is then compared to the 1M ground-

truth pairs.

When observing in 4.7 the number of unique pairs that were accepted by the two

systems or passed one of their primary filters, it becomes clear that margR does in fact

extract significantly more sentence pairs than margP. Therefore, the idea that margR
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TransformermargP TransformermargR

Unique Accumulated Unique Accumulated

Dual Precision 0.96378 0.94692 0.74100 0.73924

Recall 0.67633 0.95258 0.81882 0.98371

Ce Precision 0.79015 0.60711 0.45455 0.45848

Recall 0.72907 0.97874 0.91529 0.99562

Ch Precision 0.42498 0.42455 0.28461 0.40286

Recall 0.89028 0.99464 0.85520 0.99389

Table 4.9: Unique and accumulated precision and recall of both unsupervised en-fr

TransformermargP and TransformermargR models in the final epoch (epoch 7) on the

EP-based pseudo-comparable corpus.

is more permissive than margP holds, as it almost extracts twice as many pairs. In-

terestingly, not only Ch, which is set to high-permissive mode and the resulting final

extraction are more permissive, but also Ce, which by itself uses the same settings as

in margP, accepts significantly more pairs in margR. This may be due to the increased

amount of overall accepted sentences, which in return change the representations in Ce

at each train step, making them adapt to the additional data.

Further, it is interesting to see how Ce starts off being the representation finding the

largest amount of pairs to extract, but soon becomes overtaken by Ch. This reflects the

earlier observation that Ce, as it is already pre-trained, it finds more pairs in the first

epoch, while Ch does not. However, as Ch is randomly initialized and its values close to

zero, they quickly adapt to the data and overcome Ce in the amount of pairs it extracts.

From now on, Ce works as a damper on the vast amount of sentences entering from Ch.

This is the case for both models.

In table 4.9, we can see the unique and accumulated precision and recall for both

models in epoch 7, i.e. at the end of training. It can be seen that the accumulated

recall is only slightly lower for margP compared to the high-permissive counter part. On

the other hand, this slight drawback is overcome by the vast difference in extraction

precision between the two models. While margP is in fact on the top end of the precision

scale, margR is significantly below, accepting a larger amount of false positives during

training. This can be closer observed in figure 4.8, where we see how the extraction

precision and recall evolves over the epochs for each filter.

What is most astounding is the fact that each primary filter on its own, Ce and

Ch, never reach high precision scores. By taking the intersection of the two in the

secondary filter (dual), we suddenly reach high levels of precision. This shows that

the two representation types do complement each other. This secondary filter does not
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(a) Precision TransformermargP (b) Recall TransformermargP

(c) Precision TransformermargR (d) Recall TransformermargR

Figure 4.8: Precision and recall of unsupervised en-fr TransformermargP and

TransformermargR on the pseudo-comparable EP corpus.

come with a significant loss in recall either, as we can see that by the end of training,

the accumulated recall for both models closes in to the recall of their primary filters.

We can further observe that the recall is very much correlated with that of Ch. This

again underlines the idea that as Ch adapts, more pairs pass both the primary filter Ch

and the secondary filter. Ce on the other hand already has a relatively high recall from

the very beginning and rises more gradually as the epochs pass, converging with Ch and

the final extraction by the middle of training.

Lastly, we should note that as the precision of margP steadily increases over time,

this is not the case for margR. Even though both primary filters increase in precision, the

intersection between the two representations is faulty, leading to a decreasing accuracy
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Precision (%) Recall (%)

Grégoire and Langlais (2018), 0% noise 99.26 93.50

Grégoire and Langlais (2018), 50% noise 98.32 93.60

Grégoire and Langlais (2018), 90% noise 97.94 95.00

TransformermargP with singles 94.69 95.26

TransformermargP without singles 99.78 98.15

Table 4.10: Accumulated precision and recall of TransformermargP in its final epoch over

the pseudo-comparable corpus with negative samples that do not have translations at all

(with singles) as well as on an alternative corpus where each sentence has a translation

somewhere in the document (without singles). These are compared to the extraction

performance Grégoire and Langlais (2018) on the same dataset with variable degrees of

unaligned sentence pairs.

of the model as we pass epoch 2. One reason for this may be the generally lower precision

scores of Ce and Ch when compared to their counterparts in margP. While they start off

having very similar scores in the first epoch, they grow much slower in margR as training

continues. Ce, for example, seems to barely grow in precision. Due to the larger amount

of false positives, the representations become less reliable, and their intersection faulty,

which then is reflected in the decreasing final extraction precision in later epochs.

Therefore, it can be said that margP has a major advantage over margR. It reaches

high levels of precision with only a minor difference in recall to the high permissive

model. Its much lower amount of false positives encountered during training is reflected

in its higher BLEU scores, not only in this control experiment, but also in the main

experiments on WP.

Further, we can set our extraction performance into context with other approaches

by comparing with Grégoire and Langlais (2018). They trained a siamese network on a

pseudo-comparable corpus built from europarl with varying degrees of incorrectly aligned

sentence pairs (noise). This differs from our approach, as we do not pre-align any pairs

at all, which means that our system sees about 99.9% of noise to extract from. Also,

our comparable corpus contained sentences which did not have any translation (singles)

in the document, while this is not a special consideration in Grégoire and Langlais

(2018). We therefore also train a smaller TransformermargP without singles to present

the extraction performance in a more comparable setup.

As can be observed in figure 4.10, our margP model on the smaller pseudo-comparable

EP corpus without singles outperforms any of the models by Grégoire and Langlais

(2018), despite the circumstance that it was never explicitly trained on a labeled version

of the pseudo-comparable corpus —as opposed to their classifier— and also despite the

fact that it faces a much higher concentration of mal-aligned sentence pairs as it goes
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through all source-target combinations. While the setup between the two approaches is

not completely the same due to the slight differences in the pseudo-comparable corpus

building, this shows that TransformermargP is —at least on this rather synthetic corpus—

capable of extracting with an accuracy and precision that is competitive to systems which

were trained in a supervised fashion.
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4.3 Experiments II: Semi-Supervised Learning

In the previous experiments, word embeddings pre-trained on large monolingual corpora

were used to initialize the system. However, while there are scenarios where bilingual

data is sparse but monolingual data plentiful, other low-resource scenarios are sparse in

both monolingual and bilingual settings. In such a case, training word embeddings on

several million sentences is not always feasible. However, if a small parallel corpus is

available, pre-training the NMT model on it in order to obtain a first initialization of

the sentence representations might be a possible alternative.

This approach can also be of interest when a trained NMT system is already available

but should be further enhanced with additional monolingual data. One concrete example

would be domain adaptation.

To explore this semi-supervised scenario, we pre-train bilingual English-French mod-

els on 500k parallel sentences, followed by the extraction of additional data from Wikipedia.

4.3.1 Model Specifications

Experiments with both LSTM and transformer architectures are performed. For both

systems, a bilingual base model is trained on 500k parallel sentences from the English

and French Europarl corpora (EP base). On top of these, the linked WP articles (WP

Comparable en− fr) are used to extract parallel sentences to train on. This results in

a total of 4 models with the following specifications. All LSTM and transformer model

share the same general specifications of their counterparts in 4.2.1.

• LSTMbase: Trained for 10 epochs on 500k sentences from EP base.

• LSTMmargP+WP: Built on top of LSTMbase and extracts from en-fr WP com-

parable. As LSTMmargP (4.2.1), it uses both representations Ch and Ce in the

low-permissibility mode. The margin-based scoring function margin(SL1, SL2) is

used.

• Transformer: Analogous to the LSTM models, a Transformerbase model and

TransformermargP+WP are trained with the same settings.

4.3.2 Results and Discussion

The translation performance of the base models and the semi-supervised models is shown

in table 4.11. These are compared with Grégoire and Langlais (2018) on en2fr due to

their very similar setup. Their experiments, too, use 500k parallel EP sentences to train
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Corpus, BLEU nt13 BLEU nt14

Reference en+ fr sent. en2fr fr2en en2fr fr2en

(in millions)

Semi-Supervised NMT

Grégoire and Langlais (2018) EP (0.5) 17.63 – – –

Grégoire and Langlais (2018) + WP (1.5) 27.10 – – –

Experiments II

LSTMbase EP (0.5) 18.44 16.2 19.18 16.37

LSTMmargP+WP + WP (12+8) 20.91 19.78 22.04 20.52

Transformerbase EP (0.5) 17.46 15.92 17.78 15.81

TransformermargP+WP + WP (12+8) 24.88 24.15 27.57 26.55

Table 4.11: BLEU scores achieved by the en-fr semi-supervised models on newstest2013

(nt13) and newstest2014 (nt14) as calculated with multi-bleu.perl. Corpus sizes are

given in millions, where the size of WP for Grégoire and Langlais (2018) is the final

number of pairs selected from WP, while for our experiments it constitutes the size of

the comparable corpus extracted from.

an initial model on top of which they add up to 1.5M extracted sentences. Their major

difference from our approach is that they train a separate classifier to assign a similarity

score to sentence pairs. They then take the 1.5M top scored pairs to continue training

their NMT system. In our case, this extraction and training happens simultaneously,

which means that especially at the beginning of training it will not extract all optimal

candidates. Nevertheless, the systems use the same data and it is therefore interesting

to see a comparison.

The method of using separate extraction as in Grégoire and Langlais (2018) outper-

forms the margP+WP models. This is on one side because of their pre-selection of the

top n most similar sentence pairs for training. However, in the following section, some

of the difficulties that our semi-supervised models face, and which lead to these results,

will be examined and discussed.

Focusing on the base models, it is surprising to see that the LSTM base model

outperforms its transformer counter part. This may be due to the small amount of data

used and that these do not suffice to properly optimize the larger amount of parameters

in the transformer to benefit from its usually superior representations and translation

quality. After joint extraction and training, the transformer again outperforms the

LSTM by about 4 BLEU points.

In the following sections, the details of the extraction and the representation will be

discussed in order to gain a deeper understanding of the benefits and difficulties of both

models.
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Unique Accepted Pairs

TransformermargP+WP 1.792.297

LSTMmargP+WP 478.612

Table 4.12: Unique pairs accepted from en-fr WP during the training of both semi-

supervised models.

4.3.2.1 Unique Accepted Sentence Pairs and Similarity Distributions

Similarly to the analysis done with the unsupervised models, we will now focus on the

extracted pairs and their scores.

As can be seen in 4.12, TransformermargP+WP extracts more than three times as many

pairs than its LSTM counterpart. The dimensions of the difference in extraction can

be seen more clearly when observing how the unique pairs are accumulated over the

epochs by both systems in figure 4.9. As opposed to the unsupervised margP systems,

the sudden increase in newly accepted pairs in epoch 2 is less pronounced. However,

in TransformermargP+WP, the first epoch on the new data set is still of importance for

adapting the representations, as it is still followed by a major increase in extracted data

in epoch 2. Nevertheless, the total increase in extracted data from epoch 1 until the end

of training is still far from what has been observed in the unsupervised TransformermargP,

which shows a 10-fold increase in accepted pairs before reaching convergence. The ap-

prox. 88% increase of extracted pairs between epoch 1 and 6 in TransformermargP+WP

seems surprisingly low compared to that. For LSTMmargP+WP, this effect is even more

pronounced, as it stays around the 400k mark throughout the whole training process.

When taking into account the difference in average scores between the rejected

and accepted pairs, one can see that they already have a large divergence. As both

systems have already been pre-trained on 500k EP sentences, they start their training

with Ce and Ch representations that have been adapted to the pre-training corpus. This

is quite different from the situation of the unsupervised models in experiments 1, which

only had properly initialized Ce representations while Ch was initialized randomly. Be-

cause Ce and Ch already have been adapted to the pre-training corpus, the discrepancy

in average similarity score between accepted and rejected pairs is already high at the

beginning of training13. This gap between the two distributions —while being a positive

sign of representation learning for the unsupervised models in experiments 1— in fact

poses a problem for the semi-supervised models. Since the representations have been

adapted to the pre-training corpus, identifying new parallel sentences in the new corpus

—which may vary in style and domain— becomes difficult out of two major reasons.

Firstly, some words are new or rare and might be overshadowed by the embeddings of

13Approximately 0.66 scoring points for both semi-supervised models vs. approx. 0.05 for most

unsupervised models in experiments 1
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Figure 4.9: The number of unique pairs extracted by both en-fr semi-supervised

margP+WP models as training progresses. The color map indicates the difference in

the average score of accepted and rejected pairs.

well-known words which might contain larger values than the randomly initialized em-

bedding of a rare word. Secondly, the words in the new domain carry different nuances,

meanings or usages as from the original domain, making it hard to identify their cor-

rect counterpart in the target representations. Or put differently: As there already is a

large gap between the two distributions, it is harder for sentence pairs in the rejected

distribution to pass to the cluster of accepted pairs.

This change in the two distributions is rather stagnant, as compared to its unsuper-

vised counterparts. This becomes even more clear when examining the distribution

of mean scores of accepted and rejected pairs over the epochs in figures 4.10a and

4.10b. Only minimal change in the distributions can be observed. This is much different

from TransformermargP, and most other unsupervised Transformer models, which did

show how the two distributions are pushed apart. As these are already separated in our

semi-supervised models, the change, however, stays small.

It can therefore be said, that the pre-training on a parallel data set was not necessarily

beneficial for extraction. As the representations are already adapted to the pre-training

corpus and the average scores of the accepted and rejected distributions already quite

separated, it is harder for new sentences to be accepted. Also, as the representations

already contain larger values from pre-training, it takes longer for the training steps on

the new data to alter them.
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(a) Similarity distribution (Transformer) (b) Similarity distribution (LSTM)

Figure 4.10: Distribution of margin-based score margin(SL1, SL2) for rejected and ac-

cepted pairs when extracting from en-fr Wikipedia using both margP+WP models.

4.3.2.2 Intersections: Direction vs. Representation

In the previous section we have observed that pre-training the models representations on

a parallel corpus is not necessarily beneficial for identifying and accepting pairs. Now,

a special focus will be laid on the rejected sentence combinations.

In figure 4.11, the top graph shows the percentage of pairs rejected by the primary

filter, while at the bottom we can see the percentage of sentence pairs rejected by the

representations. For both TransformermargP+WP and LSTMmargP+WP, the quota for the

secondary filter is quite alike their margP counterparts with approximately 0.2% and

1.5% respectively. In general it can be said that both filters do not change dramatically

in relevance as the epochs progress.

Interestingly, the curves for the LSTM and transformer secondary filters do not

progress similarly. The LSTM’s secondary filter gains in relevance, as is expected from

what we have previously observed in its unsupervised counterpart LSTMmargP. That is,

more pairs are accepted by the primary filter and then rejected by the representation

intersection. We can deduce that for Ch, which is chosen for the visualization of the

primary filter, the representations are adapted quickly to the new data, allowing them

to pass. Ce, however, does not change as quickly, leading to a smaller intersection

between the two representation types and thus an enlarged relevance of the secondary

filter for rejection.

On the other side, TransformermargP+WP decreases the relevance of its secondary

filter by the second epoch. That is, less sentences pass the primary filter to get the
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Figure 4.11: Percentage of sentence pairs rejected by both semi-supervised en-fr systems

via the source-target direction intersection (top) and the representation intersection

(bottom).

chance to be rejected by the secondary filter. However, most sentences that do pass

the primary filter also pass the secondary filter, which is reflected in the larger amount

of extracted sentences for TransformermargP+WP as opposed to its LSTM counter part.

Therefore, the shrinking relevance of the secondary filter might just be a reflection of

the enlarged intersection between both representation types, meaning that both Ch and

Ce have adapted enough to the data by epoch 2 to accept and reject the same type of

sentence combinations.

4.3.3 Control Experiments: Extraction Accuracy

Having analyzed the translation quality, the representations and the filters, we now

want to focus on the extraction accuracy. Analogous to the control experiments for

the unsupervised models, we cannot analyze the extraction performance directly on the

semi-supervised models, since there is no underlying ground truth of parallel sentences

available for En-Fr. Therefore, after training the transformer and LSTM on the same

500k EP parallel corpus, they extract and train from a pseudo-comparable corpus.

4.3.3.1 Design

The pseudo-comparable corpus is created with very similar statistics as the one used for

the unsupervised control experiments. However, as we have to exclude all sentences from

EP that are part of the parallel base corpus, the total size of the pseudo-comparable

corpus is halved. Nevertheless, the general statistics of the corpus are the same as in the
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Figure 4.12: Number of unique sentences accepted by the secondary filter (dual) and

the single representations Ce and Ch of Transformermargp+EP used for the en-fr semi-

supervised control experiment.

unsupervised control experiments. That is, we use an initial noise ratio of 1:4 parallel-

negative samples. As the number of true parallel sentences here is 0.5M , the number of

negative samples is thus 2.5M . We then add additional sentences without translations

to the English articles to reach the mean English-French article length of 70 and 46

respectively.

In analogy to the unsupervised control experiments, we take the best performing

model —TransformermargP— to perform the extraction and training from the pseudo-

comparable corpus, under the name of TransformermargP+EP.

4.3.3.2 Results

When observing the number of unique accepted pairs from the pseudo-comparable

corpus in figure 4.12, we can see that its curves are very different from the unsupervised

control experiment. Firstly, due to the pre-training on the base corpus, Ch is already

initialized on actual data and therefore already starts its extraction with a higher rate

of accepted pairs than Ce. Further, the turning point at epoch 2 —where we can see the

steepest increase in accepted pairs— is very little pronounced. Instead, both represen-

tations gradually find more sentences as training progresses, very much like in the main

semi-supervised experiment on WP.

As Ch extracts more unique pairs as training progresses, its recall grows to 99.9%,

as can be seen in figure 4.13b. Also the final extraction (dual) reaches high levels of
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(a) Precision TransformermargP+EP (b) Recall TransformermargP+EP

Figure 4.13: Precision and recall of semi-supervised TransformermargP+EP on the en-fr

pseudo comparable EP corpus.

recall, mostly bounded by the less permissive Ce. Especially the second epoch sees a

major increase of more than +10% for both Ce and the secondary filter. This correlates

with the steeper increase in accepted unique pairs by epoch 2.

While more pairs are accepted and the recall increases, the final extraction precision

decays slightly as training progresses. This is surprising, as it is the opposite effect

from what was observed in the unsupervised control experiments with TransformermargP,

where the precision increased throughout the training. Further, the primary filters Ce

and Ch do not decay in precision, and instead increase slightly14. That is, due to

the increased number of sentences accepted by the primary filters without a significant

increase in precision, the number of false positives is also raised. This higher number

of false positives then leads to a higher probability of the same negative pairs having

been accepted by both primary filters, and thus passing the secondary filter. In other

words, as training progresses in this semi-supervised setting, the more similar mistakes

Ce and Ch make, leading to a decaying final extraction precision of the model. One

reason for this may be the fact that both representations have gone through the same

pre-training on EP base, and thus have more similar biases and tendencies to make

wrong classification decisions.

This lower extraction precision is also reflected in the main experiment’s results by

the much lower BLEU score and much smaller amount of unique accepted pairs due the

internal representations being damaged by the larger influx of false positives.

14We see an increase of +0.2% in Ch from the beginning of the extraction until the end. For Ce, this

increase is +0.5%.
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4.3.4 Development Experiments: Naive Online Extraction

Now that we have analyzed various components of our online extraction systems both

in the unsupervised and the semi-supervised scenario, we will make a quick detour into

one of the earlier extraction systems developed for this project in order to underline the

main achievements that our final margP model brought.

At the beginning of the project, the ideas of using two types of representations,

filtering via intersections of intersections and using a margin-based scoring function

instead of cosine similarity directly were not yet developed. Instead, the naive idea to

online parallel sentence extraction was to take a simple encoder-decoder and then:

1. Retrieve the hidden state representations Ch of a source and a target candidate.

2. Calculate their cosine similarity.

3. If the cosine similarity surpasses a manually set threshold, accept the pair.

4. If enough pairs are collected to create a batch, train.

5. Continue extraction and training in a loop.

Taking a quick look at these early experiments shows how difficult the task of online

parallel sentence extraction is and how much the system has developed throughout this

project.

The initial idea was to train the system in a semi-supervised fashion, very similarly

to experiments 2, where a 500k EP parallel corpus is used to pre-train the model before

extracting and training on WP. However, in order to be able to measure the extraction

performance as well, initial experiments were performed extracting from the 1.4M EP

pseudo-comparable corpus with 50% negative samples.

These initial experiments were mostly concerned with the threshold, that needed

to be set manually. This was done by examining the cosine similarity distribution of

sentence combinations in the corpus, and defining the top p percentile to accept. The

threshold was then automatically set, such that only the chosen percentile will pass.

However, as the representations change —and no margin-based scoring function or fil-

tering was used— the initial threshold would quickly be overcome by unwanted candidate

pairs. Therefore, one technique was to use a dynamic threshold, which would change

based on a set schedule (of n training steps), either decaying or increasing the threshold.

In this case, the percentile is increased or decreased by 1 at each epoch.

In table 4.13, the averaged BLEU score for both language directions en2fr and

fr2en can be observed with varying threshold types. There are two major points of
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Threshold Type Initial Threshold Averaged Bleu

Static 0.079 (p = 50) 18.59

0.241 (p = 70) 20.62

0.274 (p = 80) 21.09

0.317 (p = 90) 21.25

Growing 0.079 (p = 50) 19.7

0.271 (p = 80) 21.48

Decaying 0.077 (p = 50) 18.5

0.271 (p = 80) 20.68

Table 4.13: Naive online extraction: Averaged BLEU score on newstest2013 for en2fr

and fr2en for varying extraction thresholds (cosine similarity). p is the percentile chosen

for defining the cosine similarity-based threshold.

interest when observing these results. Firstly, all of the cosine similarities used for the

threshold are surprisingly low, compared to what has been observed to be the mean

cosine similarity of accepted sentences by simP, which circulates around the high 0.9’s

(see figure 4.3d for comparison). However, when we take into account that all models in

the main experiments 1 and 2 reject around 99.98% of all sentence combinations, it is

clear how a seemingly high percentile such as 80 or 90 for setting the threshold is still

not sufficient for filtering out unwanted pairs.

Secondly, while in general we can observe that higher thresholds perform better, the

system with the growing threshold and p = 80 outperforms the system with a static

threshold of p = 90. As mentioned before, the representations change over time, and as

has been analogously observed in the similarity distribution of simP (figure 4.3d), false

positives push all sentences to be more similar. To overcome this, one would optimally

avoid to accept false positives from corrupting the representations. This has been the

case for many systems in our main experiments 1 and 2, where, as training progresses,

the accepted and rejected distributions are pushed apart instead of moving closer. How-

ever, as the distribution of average similarity is moving and this is not a threshold-less

approach, the need for a growing threshold arises to adapt to the growing cosine similar-

ities. Nevertheless, this is not easy to define and leads to complex scheduling systems,

that may be based on linear growth, exponential growth or even a scheduler based on

the systems perplexity or cross-entropy. This need for threshold scheduling is one of the

major flaws of naive online parallel sentence extraction.

Lastly, we want to look at the naive approach and see which problems have been

solved by our final online extraction system:

1. Scalability of cosine similarity: The naive approach (and simP) use cosine

similarity as their scoring functions. As discussed before, it leads to problems
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of scale between different sentences, making it less suitable for identifying good

sentence pairs. The margin-based scoring function margin(SL1, SL2) solved this.

2. Parameter exploration: Even with a seemingly high percentile of 90 to set

the threshold, many sentence combinations are false positives. Setting this value

appropriately is not trivial and needs to be explored for each and every data set

we use. This tuning is costly in time and resources, and using our combination of

directional primary filters and the intersection of two representation types in the

secondary filter is the key to threshold-less extraction and training.

3. Threshold schedules: Not only is it time-consuming to find an initial threshold,

but adapting it appropriately to the changing representations during training is

complex. As our current system’s filtering is based on these changing representa-

tions, they can adapt their extraction decisions to the current state of the system.

This makes the threshold-less approach also stable throughout the training process.
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4.4 Applications

4.4.1 Experiments III: Low-Resource NMT

One of the major application of our proposed self-supervised NMT system is low-resource

NMT. The system can be trained without any parallel data, which is a powerful feature

for training an NMT system on an under-resourced or zero-resourced language pair. Yet,

as the unsupervised experiment in 4.2 focus on exploring the different properties of the

technique itself, those experiments were performed on an actual high-resource language

pair in order to stay comparable to other work. In this section, however, the focus lies

on using our technique for an actual low-resource pair, namely Gujarati-English. One

major reason for choosing this language pair —besides being truly low-resource— is the

existence of a WP parallel corpus that was created for WMT 2019. This will allow us

to calculate the extraction accuracy of the system on WP data, instead of resorting to

pseudo-comparable corpora as has been done in previous control experiments.

4.4.1.1 Data

We pre-train word embeddings on monolingual data. For English, the en WP Edi-

tion (see table 4.2), as well as NewsDocs (table 4.3) and the English versions of the

crawled corpora News18 and Zeenews (4.4) are used. Gujarati embeddings were trained

on the concatenation of all crawled Gujarati articles (Divya, News18, Gujarat Samachar,

Sandesh and Zeenews), the Bible corpus, WMT19 Localisation, WMT19 Crawl, NewsCrawl,

CommonCrawl and the Gujarati monolingual Wikipedia. This results in monolingual

corpora sizes of about 52M and 6.5M for English and Gujarati respectively.

We use newsdev2019 dev for development and both newsdev2019 test as well as

newstest2019 for testing.

We create a parallel corpus of the shuffled concatenation of all Gujarati-English

corpora listed in table 4.1 — which are not included in the development and test sets—

totaling a size of approximately 200k pairs. A base model is trained on this data.

4.4.1.2 Model Specifications

The same model specifications as TransformermargP are used. Three models are trained:

• Transformerbase: Model trained on the concatenation of the above-mentioned

parallel data.
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BLEU (newsdev2019 test) BLEU (newstest2019 )

en2gu gu2en en2gu gu2en

Transformerbase 3.73 (1.58) 6.44 (3.52) 0.79 (0.31) 6.44 (5.21)

TransformermargP+WP 2.19 (0.68) 4.55 (2.58) 0.31 (0.09) 4.86 (3.69)

Transformer+extracted 3.58 (1.47) 5.87 (3.45) 0.7 (0.28) 6.34 (5.08)

Table 4.14: Results of the en-gu models on the self-defined test set and newstest2019.

Tokenized BLEU on en2gu is calculated on the romanized and tokenized versions of the

Gujarati corpus, while untokenized BLEU —in brackets— on the original untokenized

version written in Gujarati script. TransformermargP has a BLEU of 0 in all categories

and is not included here.

• TransformermargP+WP: Takes Transformerbase for initialization and extracts from

the en-gu comparable WP.

• TransformermargP: Model using pre-trained embeddings only to extract from

en-gu comparable Wikipedia.

• Transformer+extracted: Trains on the base parallel corpus and the extracted pairs

of the last epoch of TransformermargP.

4.4.1.3 Results

In table 4.14 the BLEU scores obtained on both the smaller self-defined test set as well as

the official newstest2019 corpus are reported. As the unsupervised model TransformermargP

has a BLEU of 0, it is not contained in the table. It becomes clear that all models have

a relatively low performance, which is due to the small amount of data. What calls for

attention, however, is the fact that the models that extract additional data from WP

decay the translation performance of the base model. This effect is slightly reduced when

the additional data is extracted in an unsupervised fashion with TransformermargP and

then added to the base-model afterwards as in Transformerextracted. The reasons for this

will be discussed in more detail in the following by taking a closer look at the extraction

precision and recall.

In figure 4.14 we can observe the precision and recall extracting from the en-gu WP

articles using the semi-supervised model TransformermargP+WP and the unsupervised

TransformermargP. However, these results should be taken with a grain of salt, sim-

ply because the reference we compare with was extracted automatically15 and therefore

many sentences that may actually be parallel are not included. As such, the precision

values reported here are not necessarily good indicators of the true precision. How-

15See http://www.statmt.org/wmt19/translation-task.html
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(a) Precision (en− gu) (b) Recall (en− gu)

Figure 4.14: Accumulated and epoch-specific precision and recall of the un-

supervised (US) and semi-supervised (SS) en-gu models TransformermargP and

TransformermargP+WP respectively.

ever, the recall values are of interest, as they indicate how many parallel sentences of a

representative subset have been identified and extracted.

When comparing the recall scores, it becomes clear that TransformermargP covers

more pairs of the parallel subset than its semi-supervised counterpart. This is surprising

given the much smaller amount of data used for training the Gujarati embeddings and

their resulting less-than-optimal initialization. However, this reflects the observations

in experiments 2, stating that initialization via pre-trained embeddings leads to better

extraction than pre-training the model on a small parallel corpus.

The higher recall of the unsupervised model is also reflected in the larger amount of

unique extracted pairs, as can be observed in 4.15. While the semi-supervised model

levels out at around 3k pairs, the unsupervised model extracts more than twice as many.

Nevertheless, general recall is very low as compared to TransformermargP on en-fr

WP, where it reached scores of 0.95 and above. The characteristic sudden increase

in recall and extracted pairs, which in earlier described unsupervised models indicated

a turning point or domino effect in training where both representations have adapted

sufficiently to the data set to extract increasingly more (high-quality) data, is not found

here. The reasons for this are likely two-fold. Firstly, the corpus is too small to collect

enough representative data from, such that the representations are over-fitted on a small

and overly specific subset. They thus never adapt to the true distribution of the corpus.

This is further enforced by the rather meager pre-trained Gujarati embeddings, which

do help the model to identify a small subset of parallel data, but not enough to push

the model to extract enough sentences from the corpus to reach the above-mentioned
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Figure 4.15: Number of unique extracted pairs from en-gu Wikipedia by semi-supervised

TransformermargP+WP (SS) and unsupervised TransformermargP (US).

turning point. Nevertheless, neither the rather high-resource en-fr word embeddings

have pushed the margP models to this turning point. Most margP models made this

leap by the second or third epoch, simply by extracting enough data from the corpus to

adapt to the general corpus. Therefore, the lack of comparable data is the major reason

for the low recall.

This being the recall, we also have indications of a relatively low precision, apart

from what has been deduced from the comparison with the reference. The decayed BLEU

score when adding WP data to the base model indicated that both semi-supervised

and unsupervised approaches do not reach sufficient precision to overcome the negative

effects of the extracted false positives. However, adding the extracted data from the

last epoch of the unsupervised model on top of the base model, as has been done in

Transformer+extracted, this effect is reduced, indicating that the quality of the extracted

data from the unsupervised model is of higher precision than that of its semi-supervised

counter part.

All in all, it can be said that the method is dependent on sufficiently large compara-

ble corpora in order to reach well-adapted representations for extraction. Also, higher

quality embeddings trained on larger amounts of monolingual data are beneficial for an

increased precision. Extracting using the unsupervised method on pre-trained embed-

dings and then using that extracted data on top of (or mixed with) a base corpus for

training is advised.

In order to make this technique suitable for very low-resource scenarios such as en-gu

translation, it is necessary to explore representation learning for low-resource languages
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as well as multi-task representation learning. In our case, adding mode languages to

the multilingual setting, such that the model is trained additionally on several similar

languages such as Hindi, Bengali etc. could help improve the internal representations

and therefore the final extraction.

4.4.2 Experiments IV: Corpus Cleaning

The web is filled with multilingual content, and crawlers that specialize on extracting

bitexts16 from it make it easy to identify and extract parallel data that can be used for

training MT systems. However, crawled data tends to be noisy and sometimes filled

with redundant or useless sentences. Corpus cleaning which goes beyond running Moses

scripts and hand-written heuristics is therefore of interest. We want to use our joint

training and extraction method on a crawled parallel corpus to observe whether it is

able to identify useful sentences to extract and train on.

For these purposes, we initialize the models embeddings on the English and Ger-

man version of NewsDocs and then start extracting sentences from en − de ParaCrawl

(BiCleaner v.3.0). To compare how allowing the system to extract sentences from the

corpus differs from simply training on the crawled corpus, a reference model is trained

directly on ParaCrawl.

4.4.2.1 Model Specifications

We initialize TransformermargP (see 4.2.1) on the word embeddings trained on NewsDocs.

These two models are then used to extract and train from ParaCrawl. For the reference

model, Transformerbase, a transformer model with the standard specifications in 4.2.1 is

trained directly on the ParaCrawl corpus without filtering.

4.4.2.2 Discussion and Results

The BLEU scores on newstest2014 by both the base model and our filtering model can

be seen in table 4.15. We also add results achieved by Artetxe and Schwenk (2018) in

a similar setup. However, their results are not comparable to ours, since they used a

different version of the corpus (BiCleaner v.1.2 for their base, and raw ParaCrawl for

filtering), performed various filtering steps based on heuristics before-hand and trained

on one language direction only. Nevertheless, their results should be mentioned as their

general approach of using margin-based scoring for filtering is not dissimilar from ours.

In fact, their filtering method improves on their baseline, which is also the case in our

16For example https://github.com/bitextor/bitextor/tree/v7
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Unique Pairs en2de de2en

Artetxe and Schwenk (2018) Base 17.4M 30.05 (29.37) –

Artetxe and Schwenk (2018) Filtering 10.0M 31.19 (30.53) –

Transformerbase 31.1M 15.4 (11.35) 19.01 (15.33)

TransformermargP 16.7M 18.68 (14.03) 22.35 (18.2)

Table 4.15: Tokenized BLEU as well as untokenized BLEU (in brackets) of the filtering

models on en-de newstest2014.

Figure 4.16: Number of pairs accepted at each epoch on en − de ParaCrawl (top) and

en− fr Wikipedia (bottom) using various models.

setting.

We gain more than 3 BLEU points when using TransformermargP when filtering the

pre-filtered ParaCrawl corpus. This suggests that it further improved the filtering of

a corpus that was already pre-filtered by another algorithm, removing more noisy or

simply less useful sentences. We can observe this gradual reduction of the corpus when

looking at the number of non-unique pairs extracted at each epoch.

When we compare the number of non-unique pairs accepted by TransformermargP

on ParaCrawl (top in figure 4.16) and most other models on Wikipedia (bottom), the

pattern is quite different. While almost all models generally increase the number of pairs

accepted in each epoch throughout the training, this is not the case for the filtering

model. In fact, this is what is expected from a model that —as the representations are

adapted to the corpus— filters with increasing rigidity for useful sentences. However,

the curves are not completely comparable. On WP, most models used the first epoch

to adapt their representations (initialization), and in the second or third epoch started
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extracting significantly more (turning point). By the end of training, the number of pairs

extracted per epoch dropped slightly, which, according to the control experiments in 4.2.3

most likely comes with a last increase in precision before converging. When extracting

from the much larger ParaCrawl, however, the epochs are longer, and therefore the

initialization phase and the turning point already appear in the first epoch. As such, no

increase in accepted sentences from epoch 1 to epoch 2 is observable. Likely, the drop in

extracted sentences is similar to the one observed in the later epochs of TransformermargP

when extracting from WP. Meaning, that the precision17 is rising, which in turn pushes

down the number of accepted pairs. That this reduction of the corpus was in fact based

on positive decisions is reflected in the significant increase in BLEU as described above.

17Precision may not be the most suitable term here. According to the ParaCrawl base-line, each

originally mapped sentence pair in the corpus should be a true positive. However, not all of them might

be useful for training.
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Chapter 5

Conclusion and Future Research

In the scope of this project, we have developed a joint architecture to extract data and

train NMT systems simultaneously using the emerging NMT systems internal represen-

tations to select the data. This is a form of self-supervision alternating between two

tasks that support each other in an incremental fashion.

A special focus was laid on studying the workings of the sentence representations

and how these can be exploited to provide an adequate function for the selection and

filtering process, without the need of an additional hyperparameter that depends on the

input corpus.

The final system comes with three key improvements over the initial vanilla extrac-

tion system: Firstly, The usage of an iterative and joint extraction and training

system, which is especially beneficial for unsupervised scenarios where the amount and

quality of extracted data increases as training progresses since the system is able to

exploit earlier extraction decisions and their impact on the NMT internal sentence rep-

resentations. Further, the usage of the margin-based scoring function (Artetxe and

Schwenk, 2018) to score source-target candidates in order to avoid the scaling problem

of cosine similarity. And last but not least, filtering of candidates using the intersec-

tion of two representation types Ch and Ce which leads to high precision extraction

decisions without the need of the data specific and resource consuming effort of prior

threshold exploration.

The various sub-models that resulted from the development of this system were stud-

ied in detail in an unsupervised setting using both LSTM and Transformer architectures.

There we have examined the roles of the representations Ce and Ch, concluding that they

in fact complement each other in performing the extraction task. Not only do they make

different mistakes, which are then filtered out by their intersection, but their different

pace in adaptation improves the decisions accordingly. The interplay of the rigid
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Ce enforcing high precision and flexible Ch encouraging recall has further been observed

in the related control experiments. Apart from the quantitative experiments focusing on

the representations and their effects on the system, we have also performed a qualitative

analysis of the extraction from a Wikipedia article as training progresses. There we have

seen the importance of a shared BPE encoding as well as common numerals and other

relevant homographs for the systems extraction decisions, especially at the beginning of

training.

The best performing system that emerged from the unsupervised experiments is

TransformermargP, which implements all of the above key features and uses strict filtering

in the low permissibility mode. It outperforms other state-of-the-art unsupervised NMT

and SMT-NMT systems on the same test sets while using significantly smaller amounts

of training data. However, we rely on comparable data to reduce the search space and

speed up extraction, while other systems rely on monolingual data for training, which

may be easier to obtain in certain scenarios. One major objective of future research is

thus to make the extraction more efficient on non-comparable monolingual data. One

technique may be to focus not solely on whole sentences, but to also allow the extraction

of smaller segments such as phrases. This should increase the amount of parallel data

available to exploit also in monolingual corpora. Further, using similarity measures or

more advanced clustering techniques over corpus sections could be useful to pre-filter

sections of large corpora by theme, in order to reduce the search space.

In later experiments, we have applied the margP model in its Transformer and LSTM

version to a semi-supervised task. By studying its representations and the number

of unique extracted pairs over the epochs, we could see that the semi-supervised setting

is less beneficial for extraction. As both Ce and Ch are already adapted to the base-

model, the dynamics between the two representation types that were valuable in the

unsupervised case are not the same here. Especially the quality of fast adaptation to

the new training data is reduced in Ch, which generally pulls down the recall when

compared to the unsupervised scenario. As such, it is currently the better choice to

extract using pre-trained word embeddings only as in the unsupervised case, and then

add the extracted data to the existing parallel data. However, as this is not the basic

idea of joint training and extraction, more practical ways in improving the performance

of our system for settings where parallel data is available should be explored in the

future.

One such technique to investigate is to use the parallel corpus to train a separate

Transformer model, whose embeddings (Ce) will then be extracted to start an unsuper-

vised training and extraction on comparable data. This may be an option for scenarios

where not enough monolingual data is available to train high-quality unsupervised multi-

lingual word embeddings for initialization. However, this does not solve the problem for

domain adaptation or other transfer learning tasks, where we want to keep the previous

Ch in order to quickly refine the model on a new task. For these scenarios, we want
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to explore the effect of different regularization techniques. These will allow to push

the values in Ch closer to 0, potentially refraining extreme values from hindering the

extraction and quick adaptation on the new data set. These future experiments should

be further applied to the task of domain adaptation.

Further, we have used our extraction system in a truly low-resource scenario.

There we have seen that the system does need sufficient comparable data in the un-

supervised case in order to adapt the representation on the training data sufficiently

to start high-recall extraction. When this is not provided, the systems extraction per-

formance stays under its potential. For these purposes, it is important to increase the

amount of data extractable on a small corpus. This should be explored as a further

application of the phrase-based extraction described above. We can additionally use

back-translation for rejected pairs to further facilitate the adaptation of the represen-

tations on the data. Further, in order to improve the initial word-embeddings in such a

low-resource scenario, the above-mentioned extraction of word-embeddings from NMT

models trained on bilingual data may become of help.

We also saw how our system can be used to filter already parallel, but noisy, corpora.

We have achieved a major improvement over the baseline directly trained on the noisy

corpus. This indicated that the resulting reduction of the corpus was based on effective

extraction decisions that improved the general quality of the corpus. However, as the

experiment setup was different to the work of others, our system should in a future

experiment be applied to the raw ParaCrawl corpus in order to gain insights into the

performance of our system comparable to others.

To conclude, we have developed a joint extraction and training system for NMT,

which performs on state-of-the-art level for unsupervised scenarios where abundant of

comparable data is available. However, it is still dependent on large amounts (∼ 10M)

of comparable data, which is still far from what one can gather in a truly low-resource

scenario. In exploring both phrase-based extraction, additional back translation as well

as alternative initialization techniques, we hope to make our method available to low-

resourced language pairs in the future.
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List of Abbreviations

AT Auxiliary Task

BLEU Bilingual Evaluation Understudy

BRNN Bidirectional Recurrent Neural Network

CNN Convolutional Neural Network

de German

en English

EP EuroParl

fr French

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

gu Gujarati

L1 Language 1

L2 Language 2

LM Language Model

LSTM Long Short-Term Memory

MT Machine Translation

NMT Neural Machine Translation

OOV Out-of-vocabulary

PBSMT Phrase-Based Statistical Machine Translation

PT Primary Task

RBMT Rule-Based Machine Translation

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SMT Statistical Machine Translation

TQE Translation Quality Estimation

WMT Workshop on Statistical Machine Translation

WP Wikipedia
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Translations of Qualitative

Examples

In the following a translation of the French sample sentences used for the qualitative

analysis in experiments 1. The translations are made independently from the translations

that can partially be found in the English version of the WP article.

(a) Slender body, compressed laterally, it ends with a spike, the mouth is slightly

above.

(b) The background color of the body is light beige, reddish or light grey-green with

marbling.

(c) The snout is studded with small, red and black dots.

(d) The caudal fin is characterized by two bent, red to dark lines forming a ”V” as

well as by a black line parallel to the upper line of the ”V”.

(e) The characteristic features of this species, differentiating it notably from Cephalopho-

lis urodeta, consist in the presence of two black stains on the upper side of the

caudal peduncle.

(f) It is protogynous hermaphrodite, which means that the individual is first female

at the sexual maturity and then becomes male.
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Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature

verification using a ”siamese” time delay neural network. In Proceedings of the

6th International Conference on Neural Information Processing Systems, NIPS’93,

pages 737–744, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D.,

Mercer, R. L., and Roossin, P. S. (1990). A statistical approach to machine trans-

lation. Computational Linguistics, 16(2):79–85.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the properties

of neural machine translation: Encoder–decoder approaches. Proceedings of SSST-

8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation,

pages 103–111.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. (2014b). Learning phrase representations using RNN encoder–

decoder for statistical machine translation. Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734.

Currey, A., Miceli Barone, A. V., and Heafield, K. (2017). Copied monolingual data

improves low-resource neural machine translation. In Proceedings of the Second

Conference on Machine Translation, pages 148–156, Copenhagen, Denmark. Asso-

ciation for Computational Linguistics.

86
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