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Abstract

Neural machine translation (NMT) is currently considered the state-of-the-art for lan-

guage pairs with vast amounts of parallel data. In this thesis project, we utilize

such systems to provide translations between four languages in the psychology do-

main, where the biggest challenge is posed by in-domain data scarcity. Therefore,

the emphasis of the research is laid on exploring domain adaptation methods in this

scenario. We first propose a system for automatically building in-domain adaptation

corpora by extracting parallel sentence pairs from comparable articles of Wikipedia.

To this end, we use supervised classification and regression methods trained on NMT

context vector similarities and complementary textual similarity features. We find

that the best method for our purposes is a regression model trained on continuous

similarity labels. We rerank the extracted candidates by their similarity feature av-

erages and use the top-N partitions as adaptation corpora. In the second part of

the thesis we thoroughly examine multilingual domain adaptation by transfer learning

with respect to the adaptation data quality, size, and domain. With clean parallel

in-domain adaptation data we achieve significant improvements for most translation

directions, including ones with no adaptation data, while the automatically extracted

corpora prove beneficial mostly for language pairs with no clean in-domain adaptation

set. Particularly in these latter cases, the combination of the two adaptation corpora

yields further improvements. We also explore the possibilities of reranking N -best

translation lists with in-domain language models and similarity features. We conclude

that adapted systems produce candidates that can result in a higher improvement

in translation performance than the ones of unadapted models, and that remarkable

improvements can be achieved by similarity-based reranking methods.
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Introduction

Data-driven machine translation (MT) systems rely on the existence and availability

of large-scale parallel corpora for language pairs between which the system should

be able to provide automatic translations. Recently, the focus of MT has shifted

from statistical machine translation (SMT) approaches to neural machine translation

(NMT), and currently such systems are considered to be the state-of-the-art for well-

resourced language pairs due to their superior translation quality compared to previous

architectures [Bojar et al., 2016].

NMT systems, however, require more parallel data in order to achieve a significant im-

provement in translation performance compared to classical SMT setups [Zoph et al.,

2016]. This usually does not pose a problem for resource-rich language pairs for which

large amounts of parallel text is often available. On the other hand, NMT trans-

lation quality between language pairs that have less such data (usually referred to

as low-resourced or under-resourced language pairs) is still below that of the SMT

systems.

The CLUBS project1 aims at machine translation between language pair combinations

of German (de), English (en), Spanish (es), and French (fr). Due to the nature of

the project, the candidate texts lie in the domain of psychology. Depending on the

language pair, the availability of parallel corpora and the different domains covered by

them varies largely. Some language pairs, such as en–es have large amounts of data

available including texts in the psychology domain as well as out-of-domain parallel

corpora. Other language pairs have significant amounts of parallel text, but only

for domains that do not include psychology (e. g. en–fr). While for language pairs

excluding en (e. g. de–es) there exists out-of-domain parallel data, in our research

we choose not to include such corpora for training purposes in order to study these

1https://www.CLUBS-project.eu/en/
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zero-shot translation directions, which pose the biggest challenge in MT scenarios.

The focus of the thesis project is to explore the possibilities of using NMT within the

CLUBS project framework to address two main problems: (in-domain) data scarcity

and multilinguality. In particular, we lay the emphasis on investigating the topic

of domain adaptation for such systems. To this end, the effect of applying transfer

learning to pre-trained general-domain models is studied in different scenarios. While

this technique has been researched previously [Chu et al., 2017, Freitag & Al-Onaizan,

2016], in this thesis project we aim to further explore questions about the effects of

adaptation data quality and the effect of adaptation on under- and zero-resourced

translation directions. In addition to the transfer learning method, we also conduct

experiments on selecting the best translation candidates by means of language model

(LM) and similarity feature reranking.

As there are in-domain parallel corpora available within the CLUBS project, we in-

vestigate the effect of clean, strictly domain-specific adaptation data on our system.

However, since such parallel data is not available for all language pairs involved in

the project, we propose a method for automatically extracting additional in-domain

parallel corpora from Wikipedia2 for any of the six language pairs. We run our domain

adaptation experiments using these automatically created corpora, and check how a

relatively less clean data set affects the translation quality in the NMT framework.

We also investigate whether and how the system can benefit from the combination

of this and the high-quality parallel data. During our investigations, we lay special

attention to examining zero-resourced translation scenarios.

Outline

This thesis is organized as follows. Chapter 1 summarizes the background of NMT

and discusses domain adaptation techniques for such systems, while shortly describing

similar approaches within SMT frameworks. Chapter 2 describes the resources used in

this thesis project and introduces our proposed method for in-domain parallel sentence

extraction from Wikipedia. Chapter 3 discusses the experiments in domain adaptation

by transfer learning in NMT systems using the available parallel and automatically

extracted adaptation corpora, as well as the combination of the two. This chapter

2https://www.wikipedia.org/
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also describes the experiments conducted on reranking of N -best lists of translation

candidates in order to select the best-performing output sentences. Finally, we sum-

marize the work carried out, and we draw conclusions and lie out possibilities for

future research.
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Chapter 1

Related Work

In this chapter we provide a brief introduction to NMT, laying the emphasis on

the architecture used in this thesis project. We discuss the possibilities of extend-

ing NMT to the multilingual space, and introduce approaches of domain adaptation

within this framework. The possibilities of solving the same problems in SMT systems

are also summarized briefly, along with some further problems related to this thesis

project, most importantly parallel sentence identification. The structure of Section 1.1

is loosely based on [Cho, 2015].

1.1 Machine Translation

1.1.1 Rule-Based, Statistical, and Neural Approaches

The goal of machine translation is to build systems that are capable of translating

the sentences from one natural language to another. While RBMT systems make an

attempt on describing the underlying rules of transforming sentences in one language

to another (e. g. [Forcada et al., 2011, Mayor et al., 2011]), in the case of SMT

the task is finding an appropriate mapping function between the two languages by

statistical methods [Koehn, 2009]. This calls for a collection of translated sentence

pairs, referred to as the parallel corpus. Phrase-based SMT systems attempt to learn

the mapping function using log-linear models, operating on a set of weighted feature

functions. These can include (bidirectional) phrase alignment probabilities trained
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on the parallel corpus, reordering penalties and language model(s), as well as various

additional features. While such systems can be expanded with neural networks to

perform reranking of translation candidates [Devlin et al., 2014] or by using neural

language models [Schwenk, 2007], NMT refers to learning this function with a single

end-to-end neural network architecture.

In this thesis project, we focus on using NMT systems. While for well-resourced

language pairs their translation quality tends to be superior to that of SMT models,

they have additional properties that make them an appropriate choice for addressing

our problems. Namely, it is possible to train one NMT system on multiple language

pairs at the same time. Not only does this property allow for translating multilingual

documents in a compact way, but it also enables translation between zero-resourced

language pairs without any additional effort. Furthermore, the internal representations

learned by such systems can be used to obtain language-independent embeddings of

sentences in a multilingual space. As shown in Chapter 2, these can be utilized to

identify parallel sentences in comparable corpora, thus acquiring additional data for

adaptation purposes.

1.1.2 Neural Machine Translation Architecture

While deep neural networks are known to eliminate the need for extensive feature en-

gineering as they are capable of learning multiple levels of abstraction via their hidden

layers, the design choice for the exact network architecture is a key step and it highly

depends on the task at hand. In the case of NMT, recurrent neural networks (RNN)

are a common choice, as they are capable of maintaining their hidden vectors while

processing sentences in a sequential fashion. This functions as a memory state that

is able to model long-term dependencies that arise when processing natural language

inputs. In addition to RNN-based NMT models, approaches based on convolutional

neural network (CNN) architectures have proven to deliver results of a similar quality

with a significant speedup in computational time [Gehring et al., 2017]. Our choice for

this thesis project is the RNN-based architecture based on [Bahdanau et al., 2015] as at

the beginning of this thesis project this approach was considered the state-of-the-art,

supported by readily available open-source implementations.

Although simple RNNs [Elman, 1991] are theoretically adequate for learning tasks on

sequential data, certain practical issues (such as the vanishing gradient problem) call
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for more sophisticated solutions with more complex recurrent units. Two widely used

choices are long short-term memory (LSTM) units [Hochreiter & Schmidhuber, 1997]

and gated recurrent units (GRU) [Cho et al., 2014b]. Using recurrent architectures, it

is possible to predict the output words given the history of the input words represented

by the hidden vector.

For deep learning models, learning adequate feature representations of the data is

a key element. NMT systems utilize an encoder-decoder architecture to this end.

The encoder’s task is converting the input words (usually represented as simple one-

hot encodings of the given tokens) into continuous representations by using a weight

matrix (that is to be trained to maximize the translation performance). More formally,

if x = (x1, . . . ,xn) is a sentence of length n consisting of one-hot word vectors xi, the

the continuous word representations are given by ui = Wx · xi, where Wx is the

input embedding weight matrix. This continuous vector sequence is fed to a RNN. Its

hidden state hi at the ith word is characterized by hi = Φθ(hi−1,ui), where Φθ is a

gated unit. This way, hn represents a summary of the whole sentence.

After obtaining such representations of the target sentences, the final hidden vector hn

is passed to the decoder stage of the NMT system. It is fed to another RNN where the

hidden states zi are conditioned on this vector, the decoder’s previous hidden state,

as well as the the previously generated output word vector yi−1 (Φθ′ is again a gated

unit similar to the one used in the encoder):

zi = Φθ′(hn, zi−1,yi−1) (1.1)

The hidden states of the decoder thus allow for assigning scores to candidate output

words yk, depending on both the input sequence and words translated so far. This is

done by a scoring function that takes the dot product of the decoder’s hidden state

and the candidate word vector as inputs, resulting in higher scores for more similar

vectors: scorei(k) = yTk zi + bk (bk is a bias term). The scores are then converted

into probabilities using the softmax function [Bridle, 1990]. The obtained probability

distributions can be used for sampling output words one after another, until a certain

stop sign indicating the end of the sentence is reached.

One problem of the simple encoder-decoder architecture arises when long sentences
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are encountered. Since the source sentences are summarized in fixed-length context

vectors, the model is usually not capable of adequately representing long sentences

due to dimensionality issues. Although increasing the number of dimensions in the

model could theoretically overcome this problem, the limited memory available for

computation sets an upper limit to the extent this can be done. This way, alternative

solutions need to be proposed in order to enable the translation of longer sentences

without dramatically decreasing the system’s performance.

In order to represent the source sentence as a vector where each source word has

a corresponding slot, RNNs are replaced by bidirectional recurrent neural networks

(BRNN). Such architectures consist of two separate RNNs that read the input in two

different directions, i. e. from forward to backward and vice versa. This results in

forward and backward hidden states
−→
h i and

←−
h i. Using pairs of hidden states from

the two networks at a given position then can be viewed as the summaries of the

source sentence up until that position from the beginning and the end respectively:

hi =
[←−

h i,
−→
h i

]
=
[
Φθ,bw(

←−
h i+1,ui),Φθ,fw(

−→
h i−1,ui)

]
(1.2)

This way, each hidden state pair represents the summary of the complete source sen-

tence. We can use the concatenation of these pairs to obtain a context vector c for

each sentence and feed this to the decoder:

c = {h1, . . . ,hn} (1.3)

This summary, however, is influenced by proximity effects at each given position, as

RNNs’ memory decays with time, and more recent words have a higher effect on the

hidden states making them context dependent. Due to this property, the decoder

stage needs to weigh up these state pairs, since some of them need higher attention

than others.

There are various ways for tackling this problem, generally referred to as attention

mechanisms. The two most common architectures are the additive [Bahdanau et al.,

2015] and the multiplicative [Luong et al., 2015a] approaches. While the latter method
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is computationally less expensive, according to [Britz et al., 2017] the additive variant

delivers better results and we choose to use this approach for our thesis. An additive

attention mechanism consists of a single feed-forward neural network (FFNN) that

can learn to weigh the context vectors accordingly using the decoder’s previous hid-

den state and the hidden state pair at each given position. Similarly to the output

word probability distributions, the scores are converted into probabilities by comput-

ing the softmax function (it has to be noted here that this addition slows down the

computation significantly, as the softmax computation is generally the slowest compo-

nent of training neural networks). The attention weights αij for the ith source word

at the jth decoder state are computed as shown in Equations 1.4 and 1.5. Here, Wa

and Ua are the corresponding weight matrices to the previous decoder state and the

current hidden vector at step i.

a(zj−1,hi) = va · tanh(Wa · zj−1 + Ua · hi) (1.4)

αij =
exp(a(zj−1,hi))∑
i′ exp(a(zj−1, hi′ ))

, c
′

j =
∑
i

αijhi (1.5)

This way, the weighted context vector c′j can be fed to the decoder at the jth time

step. Using an attention mechanism overcomes the problems with longer sentences

and additionally serves as a soft alignment model between source and target sen-

tences [Bahdanau et al., 2015].

1.1.3 Solving the Out-of-Vocabulary Problem

As NMT systems use pre-defined word vectors, they are only able to opearate on a

closed vocabulary (typically containing only 30 K–100 K words due to their extensive

memory usage). It is possible to split the input into units smaller than words, and even

to translate character sequences to word sequences reading the input side character-by-

character [Ling et al., 2016]. Using subword units can overcome the issues of handling

out-of-vocabulary (OOV) words during translation. Initially, these words had been

handled by simple dictionary lookups [Jean et al., 2015, Luong et al., 2015b], but as it

is pointed out in [Sennrich et al., 2016b], this has proven problematic for certain cases
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such as compounds between languages with varying levels of morphological richness.

Their suggested approach is to apply byte pair encoding (BPE) on unseen or rare

words in order to merge certain frequent character n-grams, thus solving the problem

in a more sophisticated way.

1.1.4 Multilingual Neural Machine Translation

According to [Ha et al., 2016], since the encoder architecture creates a representation

of the source text in an embedding space, it is possible to include sentences from dif-

ferent source languages on the source side in order to obtain an embedding space that

shares the common semantic traits of the involved source languages. Then the decoder

can theoretically be used to translate from this shared space to any target language

(although certain constraints might have to be introduced in order to facilitate this).

To this end, the authors apply language specific coding on the source side and target

forcing on the target side. The former step is simply done by appending the language

code to source words and the latter involves appending the target language tags on

the sentence level.

This observation allows for various multilingual neural machine translation (ML-NMT)

scenarios that can be used to overcome the scarcity problem for under-resourced lan-

guage pairs. One possibility described in the above-mentioned publication is enriching

the system with monolingual data (e. g. adding de–de sentence pairs to an en–de par-

allel corpus), while another approach might be using additional parallel data where

the source sides are the same (e. g. expanding an en–de system with data for fr–de).

Both attempts result in better translation performance compared to baseline systems

operating on small-scale parallel data.

An extreme case of under-resourced scenarios is when no parallel data is available

for the given language pair, but the two languages occur in other available language

pairs, referred to as zero-resourced translation. A simple solution can be applying an

intermediate pivot language to overcome this issue, i. e. building two NMT systems

that first translate the source language to the pivot language (e. g. en) for which

there is available parallel data, then the pivot language gets further translated into

the source language (using parallel data between the pivot and target languages). The

authors of [Ha et al., 2016] attempt to build single many-to-many ML-NMT systems

in order to simplify the process by using parallel data between the source and the pivot
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language and the pivot and target language in an ML-NMT scenario enriching it by

monolingual data for the pivot language and optionally the target language. These

systems, however perform worse than the two-stage approach.

According to [Johnson et al., 2016], the attempt from Google for enabling zero-shot

translation overcomes this problem by utilizing an incremental training method. This

is achieved by adding small amounts of actual parallel data in the last few epochs

of the training procedure that significantly improves the translation performance. It

has to be noted, however, that in this case one cannot talk about a completely zero-

resourced scenario, but the method can be a good example of refining under-resourced

setups.

The proposed model in [Cheng et al., 2016] improves the two-stage pivot approach

by encouraging the two networks to learn the same vector representations for words

that lie in the intersection of the pivot vocabularies of source-to-pivot and pivot-to-

target models through introducing a connection term to the objective function during

training. If the translation scenario is not zero-resourced, a small available source-to-

target corpus can be also used for the joint optimization.

In [Firat et al., 2016], an approach is proposed for ML-NMT that uses separate en-

coders for each source language (ultimately projecting embeddings into a common-

dimensional space). The models they describe include a shared attention mechanism

between languages, and they are capable of producing better results for the transla-

tion of under-resourced language pairs than single NMT systems or ML-NMT models

enriched with monolingual data.

Zero-Shot Translation Directions in Statistical Machine Translation

Enabling zero-shot directions in SMT systems is only possible via pivot languages.

In this case, the trivial approach is to perform the translation pipeline source →
pivot → target, assuming there is parallel source–pivot and pivot–parallel data. A

more sophisticated way of achieving the same goal with higher efficiency is to perform

phrase table combination by triangulation [Cohn & Lapata, 2007] or by co-occurence

counts [Zhu et al., 2014]. The former method merges phrases that are have identical

pivot phrases and multiplies the posterior probabilities of such instances in order to

acquire the final probability. The latter work approaches the problem by estimat-
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ing the co-occurrences of source-pivot-target phrase pairs and computing translation

probabilities from these by standard SMT training.

1.1.5 Internal Representations of the Encoder

It has been shown in [Sutskever et al., 2014] that the context vectors of NMT systems

preserve the underlying semantic and syntactic structure of sentences. This research

has demonstrated that context vectors corresponding to sentences with similar mean-

ing and/or structure lie close to each other when projected to a two-dimensional space.

In the meanwhile, context vectors of unrelated sentences do not showcase this behavior.

While a similar phenomenon is observed when using simple bag-of-words representa-

tions, NMT context vectors preserve differences in word order; e. g. “John admires

Mary” and its paraphrases do not tend to lie in the same cluster together with the

sentence and paraphrases of “Mary admires John”.

ML-NMT systems showcase a similar behavior, according to [Johnson et al., 2016].

Sentences coming from different languages tend to belong to the same cluster when

they are grouped together by such unsupervised methods. The only exceptions are

zero-shot directions: if a language pair does not have parallel training data during the

training phase of the system, the context vectors belonging to these examples occupy

different regions of the embedding space than their semantically similar counterparts.

A probable explanation for this is that the authors use context vectors that have al-

ready been weighted by the attention mechanism that introduces language-dependency

as it serves as a soft alignment between source and target sentences.

It has been shown in [España-Bonet et al., 2017] that similarity measures between

internal representations can be successfully used for discriminating sentence pairs that

are either translations of each other, similar in meaning or semantically unrelated.

1.2 Domain Adaptation

As the amount of available in-domain data for certain MT tasks is often scarce, it

is unrealistic to build a well-performing system using only such parallel texts. This

problem calls for the utilization of larger-scale out-of-domain corpora.
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1.2.1 Acquiring In-Domain Corpora

Additional in-domain data can be acquired in different ways. Similarly to any training

corpus, domain-specific parallel data can be created manually. This approach results

in high-quality data, but requires vast amounts of human labor and adequate funds.

If we are to automatically create more in-domain parallel data, there are two main

approaches to follow. First, it is possible to translate monolingual corpora by an MT

system (cf. [Schwenk, 2008, Lambert et al., 2011, Sennrich et al., 2016a]). Alterna-

tively, one can use language models trained on in-domain data to select domain-specific

sentence pairs from general parallel corpora [Axelrod et al., 2011]. Another possibility

is to identify parallel sentences in comparable corpora by defining various measures of

sentence similarity operating on syntactic and/or semantic features [Rauf & Schwenk,

2011, Skadiņa et al., 2012, Barrón-Cedeño et al., 2015]. We follow the latter method

in this thesis project, focusing on using NMT encoder embeddings to such ends. This

allows for getting parallel data for under- and zero-resourced language pairs (as the

translation approach will be unlikely to produce good-quality results even in a ML-

NMT setting). For the detailed description of the system cf. Chapter 2. This way, we

can create adaptation sets without extensive efforts from translators; however, in this

case we have to make sacrifices regarding the quality of the automatically created/ex-

tracted sentence pairs.

1.2.2 Domain Adaptation for Statistical Machine Translation

The possibilities of adapting SMT systems to certain domains has been thoroughly

studied. The main approaches include selecting in-domain sentences from larger out-

of-domain corpora (e. g. by using in-domain language models) [Yasuda et al., 2008,

Moore & Lewis, 2010, Duh et al., 2013, Lu et al., 2007] and interpolating in- and out-

of-domain translation models [Koehn & Schroeder, 2007, Bisazza et al., 2011, Finch

& Sumita, 2008, Sennrich, 2011].

1.2.3 Domain Adaptation for Neural Machine Translation

Domain adaptation is a relatively new research line within the NMT framework. The

different approaches revolve around the possible ways of combining in-domain data
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with larger quantities of available out-of-domain text. In a simple scenario, paral-

lel texts of both types can be mixed together for training the NMT system. Since

the training data distribution is unbalanced with regard to the domains due to the

difference in available amounts, in-domain data needs to be up-sampled [Chu et al.,

2017].

One more refined attempt is fist training a NMT system on larger amounts of out-of-

domain data. Then a transfer learning method can be applied, meaning additional

epochs of training are performed on smaller-scale in-domain data. As [Freitag & Al-

Onaizan, 2016] point out, this might lead to overfitting, and to overcome this issue,

they propose using an ensemble of the out-of-domain and the domain-adapted model

at translation time. In [Chu et al., 2017] an additional method is discussed. Inspired

by ML-NMT settings, where target forcing tags are appended to source sentences,

their proposed model mixes in- and out-of-domain data in a single system where each

sentence has the additional information represented in a domain tag. This way, the

system can be forced to learn to generate sentences for the specified domains.

Another method described in [Watanabe et al., 2016] builds on the idea of param-

eter augmentation. While this research focuses on caption generation, it can prob-

ably applied to NMT domain adaptation as well. Here, the output parameters of

a neural system are dependent on the domain of the input data, and both can be

decomposed into two terms, one of which is shared for all domains, while the other

is domain-specific. During training time, only the respective terms are optimized for

each minibatch, depending on their domain.
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Chapter 2

Resources and In-Domain Corpora

Generation

This chapter is organized as follows. First, in Section 2.1 we describe the available

parallel corpora used for the purposes of the thesis project. These have been collected

and created within the CLUBS project prior to this work, and made available for

the experiments we conducted; the statistics and the description of the contents of

the various corpora are based on the internal documentation of the project. Second,

in Section 2.2 we introduce in-domain comparable corpora extracted from Wikipedia.

Section 2.3 is dedicated to describing methods for automatically extracting parallel

sentences from such comparable corpora.

2.1 Parallel Corpora

2.1.1 In-Domain Corpora

pubPsych Corpora

The CLUBS project aims at improving multilingual document retrieval from the pub-

Psych database1 by using MT. The database contains articles in the psychology do-

1https://www.pubPsych.eu/
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Table 2.1. Number of records in different languages in the pubPsych database.

de en es fr

Titles 324,005 895,982 53,065 47,707
Abstracts 250,263 513,000 34,815 33,206

Table 2.2. Availability of resources in number of records between various language combinations in
the pubPsych database.

en–de en–es en–fr de–es de–fr es–fr en–es–fr de–en–fr

Titles 307,37 25,680 45,324 7 50 2 2 6
Abstracts 47,218 16,934 189 0 0 105 105 0

main in several languages. The fact that these articles are translations of each other,

allows for building parallel corpora by applying sentence-level alignment.

The database consists of 958,726 articles, from which the titles and abstracts are

used for training, adaptation and testing purposes (the actual content of the articles

is not available due to copyright reasons). It has to be pointed out that titles and

abstracts are not available for every instance and/or for every language, which leads to

uneven amounts of parallel data among different language pairs when creating parallel

corpora. The exact numbers can be observed in Table 2.1. The most data is available

for en, while de has the second most amount of text. fr and es have roughly the

same amount of documents, that is considerably less than the previous two languages.

When looking at available parallel data in Table 2.2, one has to notice that while

en–de and en–es are sufficiently resourced, language pairs not involving en, as well

as the en–fr pair do not have sufficient parallel data. Furthermore, the number of

documents that are present all in en, es and fr is scarce (it overlaps with the en–fr

pair), while there are even less records involving en, de and fr. There are no titles

or abstracts that exist in all four languages. This fact justifies the need for exploring

ML-NMT approaches, with a special focus on under-resourced directions that is a core

element of this thesis project.

The corpus is divided into training, development and test sets; the distribution of

these three partitions by language pairs is displayed in Table 2.3.
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Table 2.3. Statistics of the pubPsych parallel corpora by language pair, partition and titles/ab-
stracts.

Abstracts

en–de en–es en–fr

snt. en tok. de tok. snt. en tok. es tok. snt. en tok. fr tok.

Train 241,749 6,584,364 6,135,612 88,848 2,640,441 2,909,559 0 0 0
Dev. 1,500 39,968 37,557 1,500 45,611 50,831 0 0 0
Test 2,162 60,219 55,610 2,486 74,382 81,575 823 25,884 29,226

Titles

en–de en–es en–fr

snt. en tok. de tok. snt. en tok. es tok. snt. en tok. fr tok.

Train 306,640 3,480,727 3,059,048 25,105 293,164 340,203 45,137 463,610 567,618
Dev. 0 0 0 0 0 0 0 0 0
Test 737 9,691 8,202 575 6,935 8,002 187 2,589 3,012

EMEA and Scielo Corpora

As the strictly in-domain pubPsych data is not sufficient for training NMT systems

from start, we only consider it using for domain adaptation experiments. In the light

of this, the general systems are first trained on parallel data from similar domains

described here, in combination with out-of-domain data introduced in Subsection 2.1.2.

The EMEA parallel corpus [Tiedemann, 2009] contains sentence-aligned documents of

the European Medicines Agency2 and covers 22 languages. For training NMT systems,

only language pairs involving en are used. This fact also allows for studying zero-shot

translation in our experiments.

The Scielo corpus contains documents of the Scientific Electronic Library Online3

covering the domains of health and psychology. It has been prepared by the organizers

of the Biomedical Translation Task in the First Conference on Machine Translation4

(WMT16) and covers en–es and en–fr language pairs.

2http://www.emea.europa.eu
3http://www.scielo.org
4http://www.statmt.org/wmt16/biomedical-translation-task.html
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Table 2.4. Size of the general, EMEA and Scielo parallel corpora.

en–de en–es en–fr

snt. en tok. de tok. snt. en tok. es tok. snt. en tok. fr tok.

UN 162,981 6,098,083 5,617,876 11,196,913 320,064,682 366,072,923 12,886,831 361,877,676 421,687,471
EP 1,920,209 53,091,548 50,548,739 1,965,734 54,505,707 57,047,216 2,007,723 55,730,752 61,888,789
ComCrawl 2,399,123 58,864,439 54,570,779 1,845,286 46,855,705 49,557,537 3,244,152 81,084,856 91,281,890
Subtotal 4,482,313 118,054,070 110,737,394 15,007,933 421,426,094 472,677,676 18,138,706 498,693,284 574,858,150

EMEA 1,108,752 14,477,119 13,197,725 1,098,333 14,334,648 15,975,506 1,092,568 14,317,365 17,046,979
ScieloBio – – – 117,862 3,252,183 3,382,511 – – –
ScieloHealth – – – 558,714 14,382,853 15,031,533 9,129 244,486 308,055
Subtotal 1,108,752 14,477,119 13,197,725 1,774,909 31,969,684 34,389,550 1,101,697 14,561,851 17,355,034

pubPsych 241,749 6,584,364 6,135,612 88,848 2,640,441 2,909,559 – – –

Total 5,832,814 139,115,553 130,070,731 16,871,690 456,036,219 509,976,785 19,240,403 513,255,135 592,213,184
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Table 2.5. Size of the development and test sets available in the project.

en–de en–es en–fr

snt. en tok. de tok. snt. en tok. es tok. snt. en tok- fr tok.

news-test2012 3,003 72,988 72,603 3,003 72,988 78,887 3,003 72,988 81,797
news-test2013 3,000 64,809 63,411 3,000 64,809 70,540 3,000 64,809 73,658

EMEA dev 2,000 38,658 37,945 2,000 36,676 39,959 2,000 34,554 41,026
EMEA test 2,000 36,864 35,773 2,000 34,359 38,615 2,000 33,316 39,674

pubPsych dev 1,500 39,968 37,557 1,500 45,611 50,831 – – –
pubPsych test 2,162 60,219 55,610 2,486 74,382 81,575 823 25,884 29,226

2.1.2 General Corpora

In order to capture general non-domain-specific phrases by the NMT systems, entirely

out-of-domain corpora are also used for training purposes. The include the Europarl

Corpus [Koehn, 2005], the United Nations Corpus [Chen & Eisele, 2012] (both con-

tain political documents) and web crawls, namely the Common Crawl Corpus made

available within the Shared Task on Machine Translation (WMT).

Table 2.4 summarizes the available data among the different corpora broken down by

language pairs involving en. Contrary to the in-domain pubPsych data, en–fr has the

most available parallel sentence pairs in the out-of-domain case. The language pairs

en–es and en–de both have significant amounts of in- and out-of-domain data, with a

high bias towards general parallel corpora.

2.1.3 Development and Test Sets

There are six sets available for development and testing purposes; two in the gen-

eral, two in the medical domain, and two strictly in-domain. The general ones are

news-test2012 and news-test2013. These are made available by the WMT workshop

organizers. The medical-domain corpora are subsets of the EMEA corpus. The strictly

in-domain development and test sets are subsets of the pubPsych corpora. Table 2.5

displays the statistics for all the development and test sets available within the project.
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2.2 Comparable Corpora

As one of the goals of the thesis project is to test the applicability of using parallel data

extracted from comparable corpora for domain adaptation, we design a system that is

capable of automatically identifying such sentence pairs for all languages. Section 2.3

describes the method in detail; in this section we briefly summarize the resources used

for this task.

2.2.1 In-Domain Comparable Corpus from Wikipedia

We use Wikipedia as a source for automatically extracting parallel sentences lying

in the appropriate domain. The main idea is that certain articles exist in several

languages, and while the content is rarely an exact translation between given language

pairs, their content is comparable with respect to the available information, structure,

etc. Thus, it can be assumed that within these articles certain sentence pairs are

indeed matching translations of each other.

Using the WikiTailor 5 tool, we extract parallel articles of the psychology and health

domains from Wikipedia. The extraction of articles in different languages is facilitated

by the fact that such articles are connected by inter-language links. Since Wikipedia

is represented as a graph, the domains can be restricted by searching it to a given

depth taking the corresponding category (e. g. psychology or health) as the starting

node. The search terminates when such a depth is reached that titles are not included

in the vocabulary in the domain anymore.

Since the graphs are different for every language, the extracted articles will differ as

well. Extracting linked articles can be done by taking either the intersection or the

union of the nodes coming from different languages. The former approach leads to

results with high precision and low recall, while the latter approach has low precision

and high recall. Since the goal is obtaining large amounts of data, the union method

is preferred for the purposes of our experiments, extracting articles that exist at least

for two of the four languages. The amount of data obtained this way is shown in

Table 2.6.

5http://cristinae.github.io/WikiTailor/
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Table 2.6. Number of extracted comparable in-domain Wikipedia articles and sentences.

Articles

es de fr

en 87,306 92,378 89,560
es – 80,383 80,384
de – – 81,367

Sentences

es de fr

en 5,867,565/2,794,176 6,063,864/3,822,984 5,986,395/3,102,534
es – 2,640,159/3,467,394 2,644,061/2,907,173
de – – 3,513,156/2,934,459

For the purpose of extracting parallel sentences from this comparable data, we train

supervised classification and regression models. As Wikipedia itself does not contain

parallel sentence-level alignments, we need additional data for training purposes, which

we describe in the following two Subsections.

2.2.2 BUCC Corpus

One corpus for training the parallel sentence identification system is the one provided

for the 10th Workshop on Building and Using Comparable Corpora6 (BUCC 2017).

This includes comparable data for the language pairs en–de and en–fr, indicating

matching sentences within texts. The data consists of Wikipedia and News Commen-

tary data. These two language pairs contribute to a total of 18,666 translated sentence

pairs.

Due to the characteristics of the training corpora’s design, negative examples (i. e.

sentence pairs that do not match) are not indexed. In order to overcome this issue,

we select a random subset from all possible sentence pairs. To obtain a balanced

distribution of positive and negative samples, we sample the same number of random

non-matching pairs. Thus, the final BUCC dataset contains 37,332 instances (cf.

Table 2.7 for the figures).

6https://comparable.limsi.fr/bucc2017/
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Table 2.7. Statistics of the BUCC and SemEval corpora.

Corpus Language pair Snt. pairs

BUCC
en–fr 18,172
en–de 19,160

Subtotal 37,332

SemEval

en–es 1,595
en–en 20,278
es–es 1,555

Subtotal 23,428

Total 60,760

2.2.3 SemEval STS Corpus

The second corpus is the one provided for the SemEval 2017 Semantic Textual Similar-

ity Task.7 It consists of sentence pairs and corresponding human-annotated continuous

similarity scores ranging between 0 and 5. This data set includes parallel sentences

that can be either bilingual or monolingual (i. e. paraphrases to varying degrees). The

exact figures are displayed in Table 2.7. While the BUCC set is balanced with regard

to available data for the two language pairs, this corpus has only little parallel data,

and only for en–es. The majority of the instances is made up from monolingual en

paraphrase pairs, while a less significant partition consists of es monolingual data.

2.2.4 Preprocessing

We preprocess the available data according to the general MT pipeline in order to

make it usable for building and adapting systems for our purposes. These steps are:

1. Text normalization

2. Text tokenization

3. Truecasing

Text normalization and tokenization are carried out as implemented in the Moses

toolkit [Koehn et al., 2007], with the normalizer having been previously adapted

to cover some irregularities of the pubPsych data. The truecaser has been trained

7http://alt.qcri.org/semeval2017/task1/
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on Wikipedia and Europarl V7 monolingual data and made available for this thesis

project.

2.3 In-Domain Parallel Sentence Extraction

This section describes a way of automatically extracting parallel adaptation sets from

comparable corpora using Wikipedia articles. As the thesis is centered around NMT,

we lay a strong focus on using the internal representations of such systems for mea-

suring similarity between cross-lingual sentence pairs.

2.3.1 Candidate Sentence Pairs in the Wikipedia Corpus

The details about building the comparable corpus are described in Subsection 2.2.1.

After the linked in-domain articles have been extracted, the assumption can be made

that these article pairs contain sentence pairs that are matching translations of each

other. Since only some articles are translations of each other and others are constructed

from scratch, each sentence has to be compared with each sentence in order to find

instances where an exact matching can be observed.

If we consider all possible source-target sentence matchings within the given articles,

the resulting number of candidate pairs is n×m for each article (where n stands for the

number of sentences in the source article and m for the target article sentence count).

Table 2.8 displays the number of candidate sentence pairs for each language pair.

As it can be seen, there are almost 30 million candidate sentence pairs considering

only language pairs that include en. Because of the polynomial complexity, we filter

out obvious negative candidates, defined by sentence length ratio. Namely, if one

sentence is twice or more as long as the other (measured by token count), we do not

consider that candidate pair. Furthermore, we ignore sentences that are likely to be

scientific formulae by the simple heuristic of checking for certain special mathematical

characters (equals sign, arrows, backslashes etc.). “Sentence pairs” such as these are

not considered useful for translation engines, even if they are indeed parallel. While

these steps slightly reduce computational cost, the later classification steps still require

heavy parallelization to keep running times at a tolerable level.
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Table 2.8. Number of candidate sentence pairs for language pairs.

es de fr

en 361,103,606 470,887,694 413,752,230
es 226,577,446 205,713,405
de 274,479,174

2.3.2 Feature Extraction and Similarities

Our goal is to build a supervised predictive model that is capable of identifying match-

ing sentence pairs. For this purpose, several metrics are to be calculated that are ca-

pable of measuring similarity between source and target side sentences. Some of them

capture semantic similarity while others capture similarities in length and vocabulary.

Context Vectors (ctx)

As it was discussed in Subsection 1.1.5 of Chapter 1, the context vectors of a NMT

system lie in a shared embedding space. This property enables using the encoder stage

of such an architecture in order to obtain these vectors for any given sentence. For

this purpose, we use the general-domain ML-NMT system available in the CLUBS

project. The system has been trained on the general, EMEA, and Scielo corpora

described 2.1.1 and 2.1.2. We use a model that has been trained with the Nematus

system8 using 512-dimensional word embeddings, no dropout, and Adadelta optimiza-

tion with a learning rate of 0.0001. As it has been shown in [España-Bonet et al.,

2017], the hidden layer size does not effect the internal representations with regard

to their discriminatory power for semantic similarity/unrelatedness, the model has

an 512-dimensional recurrent layer in the encoder, since this gives a fast performance.

Furthermore, the same study shows that the difference for representational similarities

between translations and unrelated sentence pairs stays constant after as early as 0.5

epoch of the training (although the context vector representations keep evolving). In

the light of this, we use a model at this point of the complete training procedure (as

opposed to a fully trained one) in order to save time. It has to be pointed out, how-

ever, that for the best translation quality we use models that have been fully trained

(i. e. the performance converges on a validation set).

8https://github.com/rsennrich/nematus
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The candidate sentence pairs are fed to the system’s encoder stage separately in order

to extract the corresponding context vector pairs. This is performed by a modified

version of the Nematus toolkit that allows for the extraction of the context vectors.

For the purposes of this thesis project, we use the context vectors before applying

the attention mechanism. As it serves as a soft alignment between source and target

sentences, it would eliminate the language-independent nature of the embeddings to

some extent, while our goal is to design a system that can operate between any lan-

guage pair. We then take the sum of each hidden state pair in the encoder to get a

representation for the sentence of length n:

C =
n∑
i=1

ci (2.1)

We can then measure the similarity between two context vectors (Csrc and Ctgt) using

the cosine similarity measure:

cosϑ =
CsrcCtgt

||Csrc||||Ctgt||
=

n∑
i=1

Csrc,i ·Ctgt,i√
n∑
i=1

C2
src,i

√
n∑
i=1

C2
tgt,i

(2.2)

The value varies between [-1,1]; the more similar two vectors are, the more close this

value gets to 1.

Context vectors are used not only in terms of similarity features, but also as inputs to

(neural) classifiers. This approach is discussed in 2.3.3.

Complementary Features (comp)

In addition to context vectors that mostly depend on semantics, we extract certain

complementary features that account for textual (“syntactic”) similarities between

sentence pairs.
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Character n-Grams We take advantage of the fact that parallel sentences share

vocabulary, and there are orthographical similarities among matching words (as long

as the same alphabets are used). As described in [McNamee & Mayfield, 2004], if

candidate sentence pairs are represented as sequences of characters, the sentences can

be split into character n-grams. Namely, two vectors can be constructed, where each

dimension stands for different character n-grams occurring in any of the two sentences.

The values of one vector are the actual counts of the given character n-grams in the

corresponding sentence. Since the languages include de that is known for containing

long compound words, whitespace characters are ignored during computation. The

cosine similarity can then be calculated between these two vectors in a similar fashion

to context vector similarities. For the purposes of this project, the value of n is varied

between [2,5], calculating similarity features for all four n-gram vectors. An example

demonstrating 2-gram character vectors for the words aquatic (en) and acuático (es)

can be seen below:

aquatic→ (aq = 1, qu = 1, ua = 1, at = 1, ti = 1, ic = 1, ac = 0, cu = 0, co = 0)

acuático→ (aq = 0, qu = 0, ua = 1, at = 1, ti = 1, ic = 1, ac = 1, cu = 1, co = 1)

Pseudo-Cognates In natural language, cognates are “words that are similar across

languages” [Manning & Schütze, 1999] that can also serve as indicators of connection

between multilingual sentences. Here we use a less restrictive definition referred to as

pseudo-cognates [Simard et al., 1993] that include the following three cases:

1. Punctuation marks

2. Tokens that only contain digits

3. The first four characters of tokens that are at least four characters long

Two vectors can be constructed in a similar fashion to character n-gram vectors. In

this case, each dimension stands for a given pseudo-cognate candidate occurring in

any of the two sentences the value indicating the number of occurrences in the given

sentence. As before, the cosine similarity measure between these two vectors is used

as a feature. For example, the en sequence embarrassed casualty and the es sequence

30



Table 2.9. Average length factor values (µ) and their standard deviation (σ) for each language
pair.

Language pair µ σ

de–en 0.95 0.63
en–de 1.17 0.77

de–es 1.00 0.31
es–de 1.11 1.32

fr–de 1.02 0.54
de–fr 1.03 0.30

es–fr 1.04 0.38
fr–es 1.02 0.33

es–en 0.93 0.44
en–es 1.13 0.42

fr–en 0.91 0.31
en–fr 1.16 0.41

embarazada casualidad would both have pseudo-cognate vectors of (1, 1) and a cosine

similarity of 1.

Length Factor Intuitively, similar sentences have similar lengths. The differences

between languages (average word length and count), however, call for a metric that ac-

count for these variations. We use the length factor parameter as defined in [Pouliquen

et al., 2006]:

ρ(s, t) = exp

−0.5

( |t|
|s| − µ
σ

)2
 (2.3)

where |t| and |s| stand for target and source sentence length in characters, µ and σ

are the average length factor values an their standard deviation for the given language

pair respectively; cf. Table 2.9 for details.

Token and Character Count Character and token counts on the source and target

sides are also included as features in addition to the length factor that captures the

same idea in a different manner.
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2.3.3 Parallel Sentence Identification

In this section we describe various methods for identifying parallel sentence pairs us-

ing different combinations of the features introduced in Subsection 2.3.2. We discuss

simple greedy search approaches for determining optimal threshold values as a classi-

fication boundary. The focus, however, is laid on machine learning methods, treating

the problem as a supervised classification/regression task.

Classification Task

We use the BUCC training corpus as described in Subsection 2.2.2 for training clas-

sifiers. In the following experiments we use the following partitioning for all results

reported:

1. 87.5 % for training with cross-validation (32,666 instances)

2. 10 % for training an ensemble of the best performing models (3,733 instances)

3. 2.5 % for held-out testing purposes (933 instances)

Regarding the features, the following scenarios are examined:

1. ctx: as the main focus of the thesis is NMT, context vectors obtained from the

NMT model

2. comp: considering the fact the NMT context vectors mostly account for semantic

similarities, the complementary features described in Subsection 2.3.2, as they

mostly capture sentence similarity in terms of syntax (a line of investigation

being whether this performs better and worse than the semantic information

provided by the embedding space)

3. all: the combination of context vectors and the complementary features, exam-

ining whether the semantic and syntactic information is complementary

Classification with Context Vectors
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Table 2.10. Threshold values, corresponding training accuracies (Tr. Acc) and test results for
context vector similarities on the BUCC corpora.

de–en fr–en Joint

Threshold 0.43 0.41 0.43
Tr. Acc (%) 97.2 97.4 97.3

Test P (%) 95.5 95.4 98.3
Test R (%) 97.1 100.0 98.1
Test F1 (%) 96.3 97.7 98.2

Context Vector Similarities For the ctx method, a simple greedy search method

can be applied as only one feature is available. This is done incrementally searching

for suitable similarity thresholds between the lowest score among positive training ex-

amples and the highest one among negative instances. The resolution of the search

(i. e. the step size) is set to 0.005 and the algorithm is optimized for accuracy on the

training set. Using this approach, the optimal threshold for de–en lies at 0.43 that

corresponds to a training set accuracy of 97.2 %. In the case of fr–en this value is

0.41 corresponding to 97.4 % accuracy on the training set. There are some differences

between these values depending on the language pair in question, but since we are

working with multilingual representations that are language-independent in nature,

these are negligible. Based on this fact, a joint threshold is determined following the

same approach on the joint data set involving both language pairs. This leads to a

threshold value of 0.43 with a training accuracy of 97.2 % that aligns with the values

obtained for de–en. For our goals, this joint approach is the preferred one, as the sys-

tem is intended for extracting sentence pairs from multilingual comparable corpora.

Table 2.10 shows the accuracies and similarity thresholds for both the separate lan-

guage pairs as well as the for joint training set. The evaluation of the classification

results on the held-out test set is also shown in terms of precision (P ), recall (R) and

F1 score. The greedy method achieves F1 = 98.2 on the joint dataset; it has to be

noted that on fr–en subset it performs with a 100 % recall.

Raw Context Vectors While most of the models discussed in this section use

context vector similarities as features, it is also possible to build classifiers on raw

context vector outputs of the NMT system. In this case, the context vectors can

be fed to one or more fully connected feed-forward layers of a deep neural network

(DNN). In the simple classification scenario, a two-dimensional softmax layer can

produce the class probabilities. Combining the feature vectors corresponding to each
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Table 2.11. Classification results (F1 %) with DNN-based classification.

Hidden dim. Hidden layers Concat. Multi. Sub. All

512
1 88.9 97.4 82.4 97.1
2 88.6 97.3 82.9 97.1

1024
1 88.3 97.5 83.8 96.9
2 89.0 97.4 85.5 97.2

2048
1 89.4 97.4 85.6 97.0
2 89.6 97.4 88.8 97.3

4096
1 89.8 97.0 88.1 97.2
2 89.8 97.4 91.0 97.3

of the candidate sentences at the input layer can be done in several ways. The most

straightforward solution is a simple concatenation of the vectors ([Csrc,Ctgt]). In

addition to this, they can be combined with element-wise multiplication of each of

the components (Csrc �Ctgt), or by subtracting one candidate vector from the other

(Csrc −Ctgt). We test all of these scenarios. Finally, we concatenate the results of all

three methods resulting in a feature with four times as many dimensions as that of

one context vector: [Csrc,Ctgt,Csrc �Ctgt,Csrc −Ctgt]. The training is implemented

in TensorFlow 9, using the AdaGrad optimizer with a learning rate of 0.0001.

Table 2.11 summarizes the results achieved with the DNN-based classification using

the four approaches described above: concatenation (Concat.), element-wise multipli-

cation (Multi.), subtraction (Sub.), and the concatenation of the three methods (All).

We display F1 scores on the held-out test set with eight different architectures; the

hidden layer dimension (Hidden dim.) varies between 512 and 4096, and the number

of hidden layers between 1 and 2. For each method, the best results are typeset in

bold.

The main differences in the results stem from the different input representations,

while the DNN architectures influence the performance to a smaller extent. The

concatenation method’s performance slightly increases as the architectures become

more complex. The best results are delivered when using 4096 neurons in the hidden

layers, however, they are well below the performance of the greedy search method on

context vector similarities. The trends are similar for the subtraction method. The

best result is somewhat higher in this case, and there is a noticeable improvement in

F1 scores depending on the number of hidden layers, especially in the networks using

9https://www.tensorflow.org/
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Table 2.12. Thresholds values of similarity averages on the BUCC training copora using the all
feature set.

Thrs. P R F1

0.84 96.83 94.89 95.85

2048 and 4096 hidden units. The multiplication and combined approaches manage to

reach results higher than F1 = 97.0. With respect to the neural network architectures,

while the combined method’s performance saturates at more complex architectures,

the element-wise multiplication of the context vectors performs best when using 1

hidden layer with 1024 units.

The best result we achieve with this set of experiments is F1 = 97.5 on the held-out

test set. While the value is high, it does not overperform the greedy search method

on context vector similarities. It has to be pointed out that building classifiers on raw

context vectors is a more complex problem due to the inputs’ higher dimensionality,

which can explain the worse performance of these approaches. Therefore, in the rest

of the experiments we use similarity measures for our purposes due to their simpler

nature.

Complementary and Combined Features

Threshold Search In the scenarios comp and all we employ 7 and 8 features re-

spectively. One approach to build a simple classification model is to systematically

find threshold values for each feature that maximizes the F1 score of the classification

[Barrón-Cedeño et al., 2015] and finding appropriate ways of combining these thresh-

olds for making the classification decision. Here, we first experiment with a simple

approach where we combine all six similarity measures (context vector, n-gram and

cognate vector) by taking their average. On the joint BUCC dataset we achieve an F1

score of 95.85 by this approach, the threshold lying at 0.84 (the details are summarized

in Table 2.12).

Supervised Classification While we have seen that a simple greedy threshold

search methods can already produce satisfactory results for parallel sentence identifi-

cation, we explore the possibilities of building supervised classifiers on the available
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Table 2.13. Precision (P), Recall (R) and F1 scores (%) obtained on the binary classification of
sentence pairs on the held-out test set.

de–en fr–en Joint

P R F1 P R F1 P R F1

ct
x

Thrs. 95.5 97.1 96.3 95.4 100.0 97.7 98.3 98.1 98.2
SVM 96.2 96.2 96.2 95.6 99.1 97.3 97.1 98.0 97.6
GB 97.0 95.7 96.4 95.6 99.6 97.6 97.0 97.3 97.2
Ens. 98.2 95.7 97.0 95.6 99.1 97.3 96.9 97.8 97.3

co
m
p SVM 72.3 85.5 78.4 76.7 85.1 80.7 73.4 80.9 77.0

GB 93.5 85.1 89.1 97.2 93.2 95.1 96.9 90.7 93.7
Ens. 84.0 89.4 86.6 95.5 95.5 95.5 93.4 91.6 92.5

a
ll

SVM 74.6 86.4 80.1 81.8 87.3 84.5 86.1 85.6 85.8
GB 98.7 96.6 97.6 99.1 99.6 99.3 98.9 98.9 98.9
Ens. 99.1 96.6 97.8 99.1 99.6 99.3 98.7 99.1 98.9

features. To this end, we choose to train support vector machines (SVM) with ra-

dial basis function kernel, and gradient boosting (GB) using the deviance objective

function. The models are trained on the training set with 10-fold cross-validation.

Finally an ensemble of these two models using soft voting is trained on the separate

training subset selected for this purpose. For the course of these experiments we use

implementations of the scikit-learn10 toolkit in Python. We train and test our models

in all three scenarios, i. e. ctx (using only context vector similarities), comp, and the

combination of all 8 features (all).

Precision (P), Recall (R) and F1 scores are displayed in Table 2.13 for all three sce-

narios. It has to be pointed out that when using context vector similarities only (ctx),

the greedy search yields in better results than any machine learning approach within

this scenario, although the differences seem to be negligible. A bigger difference in

performance is observed when comparing this scenario to any approach using the comp

features only: the greedy search for ctx significantly overperforms any of the machine

learning methods trained on the feature set consisting of the 7 syntactic features. From

this, it can be concluded that while having no knowledge of semantics whatsoever and

relying only textual similarities can result in a high performance (F1=93.7 on the joint

dataset), sentence embeddings by themselves are clearly better choices for this task as

they bear valuable interlingual semantic information about the candidate sentences.

As we have previously seen in 2.3.3, the performance in the ctx scenario is indepen-

10http://scikit-learn.org/stable/index.html
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Figure 2.1. System architecture

dent of the language pair in question due to the language-independent nature of the

approach. Contrary to this observation, the complementary feature set comp does

showcase differences depending on the language pair involved, and has a noteworthy

performance drop in the case of de–en. This also results in a worsening performance

in the joint dataset when comparing results to the fr–en partition. When we com-

bine both context vector and complementary features in the all scenario, the same

differences are observable due to the incorporation of the comp feature set. However,

we achieve F1 = 98.9 % on the joint set with the full feature set, even if this result

is worse than on the fr–en partition (F1 = 99.3%). This result is the best one on

the full dataset, which leads to the conclusion that the inclusion of complementary

features is indeed beneficial for our purposes and syntactic-textual characteristics do

complement the mainly semantic information carried in the context vector similarities

well.
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Table 2.14. Size in number of parallel sentences of the extracted in-domain corpus from Wikipedia.

de–es en–es Joint

ctx 24,491,723 42,116,484 66,608,207
set 13,415,885 9,070,685 22,486,570
all 25,551,816 46,194,714 71,746,530

union 36,479,058 57,758,832 94,237,890

Extraction from Wikipedia Articles

After running the experiments described above, we use the best-performing models

to extract matching sentence pairs from the Wikipedia articles extracted previously

(cf. Subsection 2.2.1). To this end, we use the classification output label of the model

to filter out the exact translations, running the classifier on candidate sentence pairs

within articles, discarding those that do not meet the criteria detailed at the begin-

ning of this section (length constraints and mathematical equations). The extraction

pipeline is illustrated on Figure 2.1.

We run preliminary experiments on the en–es and de–es subsets; we choose these

two pairs in order to study one high-resourced and one zero-shot scenario. Table 2.14

displays the number of extracted sentence pairs from articles covering these language

pairs. The extracted sentence pairs, however, contain too much noise for our purposes

with any of the classifiers. Examining the obtained data reveals that the classifier

that has a high F1-score on the held-out subsection of the training set is highly biased

towards recall on the Wikipedia data. In the following paragraphs we discuss several

alternatives for extracting higher-quality parallel sentence pairs using a classifier ob-

tained on the BUCC training data. Unfortunately, as we do not have an available

gold standard, we need to manually examine the extractions and heuristically decide

whether it is a viable approach.

Using Confidence Scores In this approach, the default 0.5 classification threshold

is shifted towards higher values in order to overcome the high number of false pos-

itives. This leads to a lower recall, but at the same time it increases the precision.

The held-out test set is used for determining a suitable tradeoff between these two

values while keeping the F1-score reasonably high. The precision-recall curves and the

corresponding F1 curves are displayed on Figure 2.2.
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(a) ctx (b) comp

(c) all

Figure 2.2. Precision (P), recall (R), and F1 scores vs. decision threshold.

In the light of these results, a decision threshold of 0.8 is a suitable value, as in the case

of the comp and all the F1 score starts to radically decrease after this point. Similarly,

in the case of the pure context vector classifier, a threshold of 0.6 seems appropriate

(using the simple threshold search classifier).

In an alternative related approach, all extracted pairs are ranked according to their

confidence scores. This allows for only the top N candidates being considered for the

domain adaptation experiments.
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Quality of Extractions The original BUCC training data is problematic regarding

two aspects. Firstly, the classification task on this dataset is easier than on Wikipedia;

in the latter case sentences being compared come from the same articles, thus they

share vocabulary and semantics even if they are not matching translations. The BUCC

training set only contains binary examples, i. e. sentences that are either exact trans-

lations of each other and pairs that are completely unrelated. This binary nature

of the training data does not account for paraphrases and partial translations that

are often to be found among the comparable Wikipedia articles. Ideally, we would

use training corpora that better mirror the properties of the Wikipedia extractions,

however, currently there is no such data available.

The second issue arises in the approach of using confidence scores. Most of these values

lie in a very narrow interval for the extracted sentence pairs (the length of the interval

is below 0.1 for en–es), which makes the confidence ranking approach problematic.

To overcome this problem, we propose using regression models instead of classifiers,

which we discuss in the next paragraphs.

Training Regression Models

In our first regression approach the classifiers are replaced with regression models while

still using the BUCC data, and instead of using the confidence of the classification,

the predicted regression scores are used for ranking.

In the second method, we train our regression models on the combination of the BUCC

corpus and the SemEval STS corpora introduced in Subsection 2.2.3. This dataset,

contrary to the BUCC data, contains sentence pairs with varying degrees of similarity.

As the available bilingual data is scarce (cf. Table 2.7), further steps are necessary for

obtaining an adequate training set. As the context vectors of NMT systems showcase a

language-independent nature, the en–en and es–es subsets can be used alongside with

the en–es embedding similarities for training models that only operate on these fea-

tures. On the other hand, the complementary syntactic features can only be calculated

on the en–es data. This issue can be solved by using the monolingual en–en subset

to translate the target side sentences into either es or fr with the same pre-trained

general-domain ML-NMT system used for obtaining the context vectors.

This way, two different sets are obtained that can be used for training different systems:
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Figure 2.3. Pearson correlation between the context vector similarities and labels on the different
training subsets.

one can be used for building regression models only on context vector features, while

the other can operate in all three scenarios (ctx, comp, and all).

In order to examine the quality of the training corpora acquired this way and to

compare it to that of the BUCC training set we examine the correlation of the different

features with the label score by using the Pearson-ρ metric. First, the test is performed

on the data set using context vectors only. The results are shown on Figure 2.3, broken

down into different subsets of the data along with the joint correlation. It can be seen

from these figures that while context vector similarities of the BUCC data set have a

correlation with the training as high as 0.9, the newly added subsets have significantly

lower ρ-values. This results in a lower correlation for the joint dataset (slightly above

0.7).

Figure 2.4 reveals similar trends on the other dataset, where the complementary sim-

ilarity measures can be calculated in addition to context vector similarities. The

correlation of syntactic features tends to change proportionally with that of the con-

text vector similarity measures. The only exception is the length factor parameter

that stays almost the same as in the case of the BUCC dataset in the case of the

en–es complementary data. The portions created by translating monolingual data,

however do not showcase this behavior.

Table 2.15 displays the performance of these new models. We run the tests on two
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Figure 2.4. Pearson correlation between different features and labels on the different training sub-
sets.

Table 2.15. Held-out test set results with the additional dataset. Results are shown for BUCC-only
(BUCC) and joint (BUCC+SemEval) training copora (Tr.) and test sets (Test)

BUCC test BUCC+SemEval Test

P R F1 MSE P R F1 MSE

BUCC+SemEval Tr.
ctx 97.8 96.9 97.3 0.77 80.9 97.7 88.5 1.66
all 98.5 98.7 98.6 0.37 85.4 93.0 89.1 1.02

BUCC Tr.
ctx 97.0 97.3 97.2 0.78 80.7 98.1 88.5 2.25
all 99.3 98.9 98.9 1.63 76.9 92.4 83.9 3.30

different test sets: the original BUCC held-out test data and a randomly sampled

2.5 % portion of the full training set excluded from training (including both BUCC11

and SemEval data). As in our previous experiments the gradient boosting approach’s

performance was very close to that of the ensemble methods, this time we omit training

regression ensembles and use only gradient boosting regressors. The BUCC regression

models’ performance on both test sets is also shown in comparison. For the precision,

recall and F1 metrics we use a decision threshold of 2.5 on the regression outputs. On

the test set covering the full data, we achieve the lowest mean squared error (MSE)

and best F1 score (after applying the decision threshold) with the all feature set; on

this test set this performs significantly better than models trained on only the BUCC

11In order to comply with the rest of the dataset, we convert the BUCC binary labels to scores of
0 and 5.
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data.

Reranking with Feature Averages

We use the best performing model from the above scenarios to repeat the extraction

process. Although the manual examination of the data sets leads to the observation

that it contains more and higher quality true positives than in the case of previous

systems for pairs with high regression scores, the extracted set still suffers from a high

number of false positive sentence pairs.

One approach to this can be utilizing the pre-trained NMT system to filter extracted

sentences. The architecture can be used as a multilingual language model that allows

for scoring target sentences corresponding to given source sentences. This indeed leads

to a ranking that separates positive and negative examples. However, we decide not

to use this method as it can “erase” the effect of other language-independent features,

and does not allow for the extraction between zero-resourced language pairs anymore.

Instead, we overcome this issue by applying a reranking method on the extractions; in

this case our reranking score is simply defined by the average of the similarity features

as described in 2.3.3. This approach eventually results in sentence pairs we consider

good quality for automatically created parallel corpora. We can then use the top N

pairs for each language pair and observe how it affects translation performance when

used for domain adaptation. To make our extractions as clean as possible, we discard

sentence pairs that are

1. not from the corresponding language (we use the langdetect12 tool for this pur-

pose)

2. have a relative token edit distance lower than 35 % of the average token length

of the two sentences after function word removal

We perform the second step in order to filter out sentence pairs that are too similar,

mainly instances that only contain proper names and connectives such as James Bond

and Michael Jackson – James Bond y Michael Jackson. We hypothesize that such

examples would not prove useful for our purposes due to their high redundancy. The

12https://pypi.python.org/pypi/langdetect?
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token edit distance is calculated by the Levenshtein distance [Levenshtein, 1966], and

the relative value is based on the average length of the two sentences. The above

filtering steps are performed during the extraction of the top N candidates.
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Chapter 3

Adaptation with In-Domain

Corpora

This chapter is dedicated to examining the possibilities of domain adaptation via

transfer learning and reranking, with a strong focus on the effect of the data quality,

size, and domain. To this end, we explore three scenarios and make observations on

how adaptation data quality (extracted automatically from parallel and comparable

corpora) can influence NMT systems. Our investigation has several purposes: first,

to see the achievable performance boost in terms of translation quality. Second, to

check if using automatically extracted in-domain data is a viable option for adapting

NMT models. Finally, we examine how the inherently noisier automatically extracted

data affects NMT systems during domain adaptation in the presence of high-quality

parallel corpora. We report our results using Bilingual Evaluation Understudy (BLEU)

scores [Papineni et al., 2002], a metric based on n-gram matching precision between

translation hypotheses and gold standards.

3.1 Domain Adaptation via Transfer Learning

As discussed in 1.2.3 of Chapter 1, there are various possibilities available for this

purpose, including but not limited to transfer learning using a general out-of-domain

system with in-domain data, ensembling adapted and unadapted systems, as well as

performing target-forcing within the NMT system with respect to the training sen-
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tences’ domains. The goal of this section is to execute the transfer learning approach

in various scenarios regarding the available adaptation data, namely:

1. using only parallel, clean data (pubPsych, PP)

2. using only the extracted data from comparable corpora (Wikipedia, WP)

3. using the combination of the two data sets (Merge)

For our adaptation purposes we use a fully trained NMT system as the general-domain

baseline model, trained on EMEA, Scielo, and general data (cf. the first two blocks

of Table 2.4 in Chapter 2). This model was made available in the CLUBS project

framework and was trained with the following parameters:

Word embedding dimension: 512

Hidden layer dimension: 2,048

Vocabulary size: 80,000 + 2,000 BPE units

Optimizer: AdaDelta

Learning rate: 0.0001

Batch size: 80

The adaptation procedure consists of continuing the training of the system for a given

number of additional epochs. While during the training of the general system no

dropout is applied, for adaptation purposes we utilize a dropout rate of 0.2 to avoid

overfitting. It has to be pointed out that since the vocabulary is fixed (built from

out-of-domain and Wikipedia data), the adapted systems’ translations are limited to

these words and subword units. This fact can affect the performance on in-domain

data after adaptation, as what is not included in the vocabulary cannot be learned.

3.1.1 Data Preprocessing

In addition to the general steps that are necessary to carry out for any MT systems

(cf. Chapter 2, Subsection 2.2.4), ML-NMT architectures require additional prepro-

cessing steps, namely:

1. Applying BPE
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2. Appending target forcing tags

The BPE conversion is carried out by the system implemented in the Subword Neural

Machine Translation system1 using a BPE model that has been trained on all language

pair combinations of the CLUBS project. For ML-NMT scenarios, we need to indicate

the desired target language on the source side, which is carried out by appending the

tags <2L2> to the start of each source sentence, where L2 stands for the target language

(en, es, de, or fr).

3.1.2 Transfer Learning with In-Domain Parallel Corpora

First, we run experiments using the high-quality parallel data only (PP), in order to

see its effect on different language pairs and test sets in ML-NMT adaptation setting.

Besides the language target forcing tags, we additionally introduce a category tag that

specifies the origin of the sentence (“title” or “abstract”) as this would further improve

translation quality on the test data where the same information is available (pubPsych

titles and abstracts test sets).

We run the training process for an additional 5 epochs and we examine the evolution

of the translation performance in terms of BLEU score after each of these epochs. The

adapted systems are first tested on the in-domain pubPsych test sets. We also run

the evaluation on the close-domain test sets (EMEA) and out-of-domain ones (news-

test2013 ). Apart from the advantage of being able to see the performance evolution

for these missing language pairs, this is also beneficial for observing the effect domain

adaptation has on out-of-domain datasets.

Figure 3.1 displays the evolution of the NMT system throughout 5 adaptation epochs.

The figure is broken down by dataset, and different lines correspond to source-language

pair combinations. Regarding the change in translation quality, several observations

can be made. First, there are two different trends to be observed that depend on

the type of the test data. It can be said in general that on in-domain datasets, the

system’s performance keeps improving until the fourth or fifth epoch. In most cases,

the performance starts decreasing at the fourth epoch (a phenomenon that can be

explained by overfitting). In the case of the three close- and out-of-domain datasets,

1https://github.com/rsennrich/subword-nmt
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(a) pubPsych abstracts (dev) (b) pubPsych abstracts (test)

(c) pubPsych titles (test) (d) EMEA (dev)

(e) EMEA (test) (f) news-test

Figure 3.1. Evolution of domain adaptation through five epochs using the pubPsych adaptation
corpus. Dashed lines indicate missing language pairs from adaptation data.
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however, the results saturate after one epoch of adaptation, and worsen after this point.

The explanation for this behavior is that the overfitting takes effect much earlier due

to the mismatch between the domain of the adaptation and test sets. Furthermore,

this trend is repeated in the case of in-domain test sets for the language pair that

is underrepresented in the adaptation set (en–fr, only titles are available). This is

caused by the fact that even though the new data is beneficial, in this case its quality

is inferior to the original training data, as that set contains sufficient parallel data for

this language pair. Because of this, while one epoch of adaptation has positive effects,

further training leads to decreasing quality.

From this experiment we can draw several preliminary conclusions to determine the

direction of further steps and more detailed analysis. Firstly, it is clear that the

transfer learning approach to domain adaptation is a viable one in the case of this

particular system and available adaptation dataset. Secondly, it helps us determine

the number of adaptation epochs where the performance of the adapted systems is

expected to be the best. On in-domain data, for the majority of language pairs this

lies at four additional epochs. In the light of this, we choose to test our systems at

this point on the pubPsych datasets. Furthermore, we can draw the conclusion that

domain adaptation can even be beneficial for translating data that is not strictly in-

domain or out-of-domain. In this case, however, we use systems that have only been

adapted for one additional epoch of training. Similarly, this seems to be the best point

in training for translating in-domain texts between language pairs that do not have

any or sufficient parallel data in the adaptation set.

Regarding the achievable performance improvement, the results are displayed in Ta-

ble 3.3 to 3.7, in the blocks marked as NMT PP. Arrows represent significant changes

with respect to the baseline performance (NMT BL) as calculated by the bootstrap

resampling method [Koehn, 2004] implemented in Moses2. Statistical significance is

indicated at p = 0.005. The evaluations are performed after 1 and 4 epochs of adap-

tation respectively, depending on the test set as described above. On the in-domain

data we obtain significant improvement in all cases, that generally lies between 1 and

2 BLEU scores. In certain cases the improvements are not significant, most notably

on the en–fr language pair where there is no adaptation data available (other cases

are es → en on the pubPsych abstracts sets, and de → en on pubPsych titles). On

2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/

bootstrap-hypothesis-difference-significance.pl
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Table 3.1. Relative improvements on in-domain and general test sets using the manual adaptation
data.

Test set Avg. (%) SD (%)

pubPsych abs. (dev) +7 4
pubPsych abs. (test) +4 3
pubPsych tit. +7 4
In-Domain full +6 4

EMEA (dev) +5 2
EMEA (test) +4 3
news-test +4 3
General & Close-Domain full +4 3

the pubPsych titles test set, the performance is significantly worse in the case of the

en → fr direction. The average relative improvements (Avg.) and their standard

deviations (SD) are displayed in Table 3.1, broken down by test set.

The effect of domain adaptation with the parallel corpora on close- and general-domain

test sets showcases similar trends (cf. Table 3.1 for the general overview, and Tables

3.3 to 3.7 for the full details). The improvements, however are significant in less

cases. Furthermore, for the es → de direction on the EMEA test set results worsen

significantly. Nevertheless, the domain adaptation process demonstrates some positive

effect on non-present language pairs for both types of test data, meaning that “zero-

shot domain adaptation” is a possibility for NMT systems.

3.1.3 Transfer Learning with In-Domain Comparable Cor-

pora

In the next step we examine the extent the automatically extracted parallel sentences

from Wikipedia can be used for domain adaptation purposes. In order to get a clear

picture of how the amount and quality of the data affects NMT systems, we experiment

with different partitions of the data. Namely, we take the top N extracted sentence

pairs for each language pair according to the score produced by the ranking approach

as described in 2.3.3 of Chapter 2. We set N to 5,000 (WP5), 10,000 (WP10) and

30,000 (WP30) resulting in datasets with 60,000, 120,000 and 360,000 sentence pairs

respectively. These partitions are significantly smaller than the PP adaptation data

(1,414,958 sentence pairs in total), and their covered domain is less homogeneous

as they are extracted automatically from articles about health and psychology. We
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Table 3.2. Distribution of target forcing tags in the PP adaptation dataset.

Tag Count %

<2en> 707,479 50.0
<2de> 548,389 38.8
<2es> 113,953 8.1
<2fr> 45,137 3.2

perform the partitioning in order to investigate the tradeoff between the amount of

data and its quality, as in our ranking approach it is assumed that more related

sentence pairs receive a higher score. This way, the data sets will contain more noise

by increasing N values. As discussed in the previous section, we run the in-domain

tests after 4 epochs of adaptation, while the translations on the test sets that are not

strictly in-domain are done with systems adapted only for one epoch.

Initially, we run our experiments with the previously used batch size of 80. In this case,

however, we observe that for certain translation directions the multilingual system does

not perform the target forcing successfully, and translates source sentences to the same

language. These instances actually undergo translation, as they do not remain exactly

the same on the target side, but the system fails to translate them to the appropriate

target language. We overcome this issue by increasing the batch size to 160. In this

case, the target forcing works appropriately. A possible explanation could be that this

way the system is presented with more instances per batch and thus it is to able to learn

the appropriate translation directions more efficiently since the error computation is

averaged over more examples. However, this phenomenon does not occur in the case

of adapting the system with PP data, even though the batch size was not increased in

that case. This can be explained by the larger amount of available data: as there are

over 1 million sentence pairs in that case, for the automatic extraction we use partitions

with sizes varying between 60,000 and 360,000. Furthermore, the distribution of target

forcing tags is even with the WP data, while this does not hold for the PP adaptation

set (cf. Table 3.2), making the learning task “less easy”. While further investigation

would be necessary to study this matter in detail, at this point we can conclude that

when the adaptation data is scarce and evenly distributed, ML-NMT systems need

to be adapted with larger batch sizes in order to keep the target forcing mechanism

functioning appropriately.

The results on in-domain datasets are displayed in Tables 3.3 to 3.7 (arrows represent

changes with respect to the baseline performance as long as they are significant at
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p = 0.005). Generally speaking, for most translation directions and test sets the

results are 1–2 BLEU points worse compared to the baseline system’s performance,

often reaching significant levels. Certain scenarios perform slightly better than the

unadapted system, the improvement, however, is usually not significant compared to

the baseline. The general trend in case of worsening performances is proportionate to

the adaptation datasets’ size: as it increases, the results get worse, reaching significant

levels of difference for the WP30 in the case of en → es and de → en on certain test

sets (for de → en it already happens at WP10 for the pubPsych titles test set). The

noteworthy exception is the en→ fr direction on the pubPsych titles test set, where

the top-5,000 set already drastically worsens the translation quality (more than 3.5

points of drop), and one can observe a decreasing trend in terms of BLEU score as

the size of the dataset increases. Conversely, the reverse direction fr → en showcases

significant improvement on the same test set for WP5.

There is one case, however, when the adaptation with the automatic extractions yields

results that are significant improvements with regard to the baseline performance.

Interestingly enough, this also happens with the en → fr direction, on the abstract

test set. In this case, we can observe a steady improvement as the size of the dataset

increases. All results overperform the adaptation results with the PP adaptation set

at the same number of epochs (that has no data for abstracts for this language pair).

On the other hand, the reverse direction fr → en does not demonstrate the same

behavior on the same test set, as results get worse using this adaptation data, and in

this case adaptation with the parallel PP data yields a somewhat better performance

(even though it is still worse than the baseline’s). These differences, however, are not

significant in any of these cases.

The difference between the behavior of titles and abstracts on the en→ fr direction

are explained by their differences: abstracts contain “common” full sentences, while

titles are inherently of a different structure. Adapting the system with the PP data

allows for using the <abstracts> and <title> tags, that account for these differences.

As these target forcing tags are not available in the WP data, and since its content

is more similar to that of the abstracts (full sentences), it improves the results on the

corresponding test set, while on the titles set it worsens the performance. Additionally,

since the PP set has no data for abstracts in the en–fr language pair, adaptation with

WP10 and WP30 overperform the results achieved with PP.

Regarding this set of experiments, we can draw several conclusions. Firstly, as in most
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Table 3.3. Adaptation results (BLEU) for en–es. Best results on each test set are shown in bold
(in case of significant improvements).

en→ es

PP abs. (dev) PP abs. (test) PP tit. EMEA (dev) EMEA (test) news-test

NMT BL 26.91 31.60 42.71 38.50 39.25 22.58
SMT BL – 32.11 35.22↓ – – –

NMT PP ↑28.67 ↑34.39 ↑44.56 ↑40.02 ↑41.62 ↑23.09
SMT PP – 32.83 36.58↓ – – –

WP5 ↓26.23 31.25 41.05 ↓35.89 ↓36.49 ↓21.74
WP10 26.79 32.09 40.91 ↓35.78 ↓36.17 ↓21.92
WP30 26.72 31.73 ↓40.26 ↓32.25 ↓36.11 22.49

Merge5 ↑28.13↓ ↑34.02 ↑45.31 ↓36.55↓ ↓36.79↓ ↑23.49
Merge10 ↑28.19 ↑33.44 ↑44.72 ↓37.61 ↓38.58↓ ↑23.68↑
Merge30 ↑28.79 ↑34.60 ↑44.98 ↓36.33↓ ↓36.42↓ ↑23.43

es→ en

PP abs. (dev) PP abs. (test) PP tit. EMEA (dev) EMEA (test) news-test

NMT BL 25.98 31.20 38.55 40.77 40.25 23.08
SMT BL – 29.94↓ 33.48↓ – – –

NMT PP 26.35 31.77 ↑40.29 ↑43.16 41.75 23.43
SMT PP – ↑31.07 ↑35.51↓ – – –

WP5 25.52 ↓30.12 38.16 ↓37.24 ↓36.91 ↑23.85
WP10 25.45 ↓30.35 37.20 ↓37.82 ↓37.56 ↑23.73
WP30 ↓24.61 ↓30.10 ↓35.47 ↓37.04 ↓36.45 ↑23.94

Merge5 ↑26.57 32.22 ↑40.25 ↓38.43↓ ↓38.05↓ 23.49↑
Merge10 ↑26.75 32.21 ↑40.37 ↓39.45 ↓38.67↓ 23.36↓
Merge30 26.32 31.91 40.19 ↓37.86↓ ↓37.52↓ ↑23.78↑

cases we cannot achieve significant improvement on the in-domain test sets, it can be

concluded that using automatically extracted adaptation sets from Wikipedia without

any additional clean data is generally not useful for NMT systems, as its quality is

not high enough to significantly improve the in-domain performance. It has to noted

that in addition to the lower quality, the actual domain coverage of the data does

not necessarily align completely with that of the test sets. This is backed up by the

fact that adapting with the WP data leads to significant improvements on the out-

of-domain news-test2013 dataset (except for en → es and en → de), while on the

close-domain EMEA test sets we observe a behavior similar to the strictly in-domain

pubPsych sets. As we aimed for covering a large number of articles when extracting

from the health and psychology domains, the automatic adaptation set contains many

parallel sentences that are only slightly related to these topics. Narrowing the search
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Table 3.4. Adaptation results (BLEU) for en–de. Best results on each test set are shown in bold
(in case of significant improvements).

en→ de

PP abs. (dev) PP abs. (test) PP tit. EMEA (dev) EMEA (test) news-test

NMT BL 17.51 11.05 31.23 31.29 31.15 14.35
SMT BL – 8.33↓ 15.92↓ – – –

NMT PP ↑19.39 ↑12.16 ↑33.28 ↑32.91 32.69 14.35
SMT PP – ↑10.94↓ ↑24.12↓ – – –

WP5 ↓16.42 ↓10.04 30.44 ↓27.01 ↓26.70 ↓13.17
WP10 ↓16.34 ↓9.80 ↓28.59 ↓27.23 ↓26.67 ↓13.25
WP30 ↓13.09 ↓7.76 ↓23.12 ↓26.37 ↓25.95 ↓13.12

Merge5 ↑18.81↓ ↑11.74↓ ↑33.60 ↓29.17↓ ↓28.32↓ 14.34
Merge10 ↑19.01 ↑11.69↓ ↑33.89 ↓29.60↓ ↓29.54↓ 14.62
Merge30 ↑19.79 ↑11.96 ↑33.97 ↓26.63↓ ↓27.33↓ 13.46↓

de→ en

PP abs. (dev) PP abs. (test) PP tit. EMEA (dev) EMEA (test) news-test

NMT BL 24.35 15.80 40.79 36.91 36.10 18.89
SMT BL – 12.77↓ 23.64↓ – – –

NMT PP ↑26.46 ↑17.11 41.70 ↑39.36 ↑38.12 19.52
SMT PP – ↑15.61↓ ↑32.79↓ – – –

WP5 ↓22.76 ↓15.01 40.59 ↓35.48 ↓34.28 19.26
WP10 ↓23.49 15.12 ↓39.24 ↓34.78 ↓33.66 ↑19.37
WP30 ↓23.41 15.34 ↓37.86 ↓34.92 ↓33.18 18.39

Merge5 ↑25.73↓ ↑16.49↓ 41.34 ↓35.78↓ ↓34.84↓ 19.26
Merge10 ↑25.38↓ ↑16.66↓ ↑42.02 ↓36.70↓ ↓34.81 ↑19.46
Merge30 ↑26.38 ↑16.95 41.44 ↓33.85↓ ↓33.03↓ 19.41

criteria could be a future possibility, however, this could lead to losing a great num-

ber of high-quality parallel sentences, and therefore would not necessarily lead to an

improvement.

In the case of the close-domain and general test sets additional conclusions can be

drawn, since we have available data for language pairs that are under- or zero-resourced

in either the PP data set, or even the general NMT system. The Wikipedia extractions

have a clear positive effect for these language pairs as the adapted systems often

overperform the one that has been adapted on the pubPsych data. For es → de,

WP10 yields a significant improvement on the EMEA dev set, and all WP sets result in

significantly better performance on the news-test2013 test data. In the case of EMEA

test, the performance improvements are not significant, but all results are above the
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Table 3.5. Adaptation results (BLEU) for en–fr. Best results on each test set are shown in bold
(in case of significant improvements).

en→ fr

PP abs. (test) PP tit. EMEA (dev) EMEA (test) news-test

NMT BL 19.01 40.00 26.12 26.08 17.56
SMT BL 20.14 22.79↓ – – –

NMT PP ↑21.16 ↓38.35 ↑28.05 ↑28.19 18.46

WP5 ↑20.96 ↓36.41 ↑26.91 25.33 ↑18.94
WP10 ↑22.41 ↓35.39 ↑27.17 25.36 ↑19.20
WP30 ↑22.87 ↓35.03 ↑27.33 25.83 ↑19.28

Merge5 19.41↓ 39.36 ↑26.45↓ 25.15↓ ↑18.38↓
Merge10 18.71↓ 38.87 ↑27.10 ↑26.22↓ ↑18.89↑
Merge30 ↑21.40↑ 38.89 ↑27.12↓ ↓25.60↓ ↑18.94↑

fr → en

PP abs. (test) PP tit. EMEA (dev) EMEA (test) news-test

NMT BL 24.60 39.09 36.39 34.97 22.62
SMT BL 23.80 36.00 – – –

NMT PP 24.89 39.98 37.55 36.18 ↑22.74

WP5 23.39 ↑40.84 ↓34.75 33.67 ↑23.12
WP10 22.41 39.22 ↓34.88 ↓32.85 22.85
WP30 23.51 38.44 ↓34.78 32.03 ↑23.38

Merge5 24.6 39.33 34.52 ↓32.91↓ 22.78↑
Merge10 24.92 38.16↓ ↓34.91 33.05 22.51
Merge30 24.25 40.99 ↓33.94↓ ↓32.87 22.19↓

baseline and the performance with the PP adaptation (which is significantly worse

than that of the unadapted system). For the reverse de → es direction, however,

results on the close-domain test sets are slightly worse than with the PP adaptation,

while on the general-domain set WP5 produces a result that is both better than the

performance of the system adapted with PP data, and a significant improvement over

the baseline.

Improvements are clear and significant for the fr–es language pair on the general-

domain data, and they are higher than for the systems adapted with PP. The same

can be observed for de–fr, except for the WP30 set in case of de→ fr.

In addition to the zero-resourced adaptation directions, the en–fr language pair also

undergoes significant improvements, similarly to the in-domain test sets. However, as
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Table 3.6. Adaptation results (BLEU) for es–de. Best results on each test set are shown in bold
(in case of significant improvements).

es→ de

EMEA (dev) EMEA (test) news-test

NMT BL 14.44 15.52 6.89

NMT PP 14.65 ↓15.34 6.97

WP5 14.86 16.58 ↑9.78
WP10 ↑15.89 16.84 ↑9.73
WP30 14.94 16.39 ↑9.94

Merge5 ↑16.38↑ 17.46↑ ↑10.71↑
Merge10 16.55 17.71 ↑10.68↑
Merge30 16.34 17.12 ↑10.76↑

de→ es

EMEA (dev) EMEA (test) news-test

NMT BL 19.37 20.57 14.42

NMT PP ↑20.23 20.90 14.52

WP5 19.83 ↓20.55 ↑15.03
WP10 ↑20.02 ↑20.65 14.62
WP30 19.28 ↓19.45 ↓13.98

Merge5 ↑20.00↓ ↓20.43↓ 14.75↑
Merge10 ↑19.58↓ ↓20.05 14.90↑
Merge30 ↑19.65↓ ↓20.21↓ 14.96↑

Table 3.7. Adaptation results (BLEU) for es–fr and de–fr. Best results on each test set are shown
in bold (in case of significant improvements).

es→ fr fr → es de→ fr fr → de

news-test news-test news-test news-test

NMT BL 17.77 24.92 9.27 6.30

NMT PP ↑19.11 25.33 ↑10.40 6.54

WP5 ↑21.30 ↑25.77 ↑11.29 ↑10.14
WP10 ↑21.30 ↑25.92 ↑10.98 ↑10.01
WP30 ↑21.28 ↑26.15 8.23 ↑9.01

Merge5 ↑20.21↑ ↑25.48↑ ↑10.53↑ ↑10.41↑
Merge10 ↑20.88↑ ↑25.82↑ ↑10.97↑ ↑10.03↑
Merge30 ↑20.80↑ ↑26.18↑ 9.78↓ ↑9.44↑
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in that case, the improvement depends on the particular test set, as it does not occur

with the EMEA test data. Furthermore, as observed previously, for the fr → en

direction we cannot talk about such improvements; conversely, most results get signif-

icantly worse for close-domain test sets, while there are still significant improvements

on the general-domain news-test2013 data. For other well-resourced language pairs,

results significantly worsen on the close-domain EMEA sets, while the out-of-domain

test results tend to depend on the exact translation direction.

As for the tendencies regarding the size of the extraction partition, there are again

some general trends to be observed, although they do not hold for all cases. It can

be said that when results worsen (mostly for language pairs including en, except for

en → es), the BLEU score decreases with the increasing dataset size. For language

pairs where the adaptation is beneficial, this trend is reversed. In some cases, however,

the performance saturates at smaller datasets, and increasing the adaptation set size

worsens the results (e. g. de→ es on news-test2013 ). These trends should align with

the quality of the extractions, that can be evaluated via crowdsourcing in future work.

Taking the above observations into consideration, the most important conclusion is

that automatic extractions can be beneficial for under- or zero-resourced language

pairs. This fact allows for adapting ML-NMT systems on these language pairs by

automatically acquiring the adaptation sets and without having parallel data between

these languages, that is often one of the main bottlenecks of such scenarios. It has to be

pointed out that due to the unavailability of the in-domain test sets for low-resourced

pairs we could only test our systems on out-of-domain data. We hypothesize that the

same positive trend would hold on in-domain sets as well, and the improvement could

be even higher due to the better match between domains of the adaptation and test

sets. This should be researched in the future, as zero-resourced in-domain test sets

are currently being created.

In addition to this, adapting with automatic extractions can prove useful on general-

domain test sets for well-resourced language pairs as long as the quality is high enough

(although different translation directions can behave differently within the same lan-

guage pair). As for the size of the automatically extracted adaptation set, the best

approach is using smaller but higher-quality partitions. Even though using more data

can further improve the performance, it is not always the case, and when it is, the

additional improvement is often negligible. As long as the quality of the data is high,

a smaller corpus should be sufficient for adaptation purposes.
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3.1.4 Transfer Learning with Combined Parallel and Compa-

rable In-Domain Data

In the final iteration of the domain adaptation experiments the parallel pubPsych

adaptation set is merged with the Wikipedia extractions (Merge). Similar to the

previous approach, we adapt the systems with three different partitions of the auto-

matic extractions, which are mixed with the full PP adaptation set (Merge5, Merge10,

Merge30).

Results are also shown on Tables 3.3 to 3.7. Here, the arrows after the BLEU scores

indicate significant differences (p = 0.005) when compared to the adapted results

achieved in the PP adaptation scenario, while the ones before the numbers stand for

significant differences with respect to the baseline system. For the in-domain test sets

in most cases the addition of the Wikipedia extractions does not lead to significant dif-

ferences compared to the results achieved with only the PP adaptation data. In these

cases the results are somewhat different, but the differences stay within the signifi-

cance level. There are exceptions where results with certain partitions are significantly

worse than the ones achieved with the PP adaptation data, mostly on the pubPsych

abstracts test sets (en→ es, en–de, en→ fr), as well as on the pubPsych titles in the

case of fr → en. However, for the same translation direction, the Merge30 adaptation

scenario significantly overperforms the results with PP on the pubPsych abstracts test

set. This is explained by the fact that in this case, the sole WP adaptations have

already yielded superior results to the PP adaptation. As we increase the amount

of WP data in the Merge approaches, the benefits of the WP extractions re-emerge

(even though they do not reach the same quality as adaptations without the PP data).

Increasing the partition size of WP in the Merge scenarios generally gets the results

closer to the ones achievable in the PP scenario for well-resourced language pairs on

in-domain test sets. In addition to en→ fr, Merge30 also overperforms the PP results

for en→ es (pubPsych abstracts dev), although the difference is not significant in this

case.

As for the close- and general-domain test sets, it can again be observed that the ad-

dition of the automatic extractions is mainly beneficial for zero-shot translation. The

most noteworthy translation direction is es → de. In this case we observe significant

improvements on all test sets (around 2 BLEU scores on the EMEA sets, and almost

4 points on the news-test2013 data). These results are higher than that of achieved
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by the PP adaptation set, which does not contain this language pair. Furthermore,

the translation performance is higher compared to the results achieved with the auto-

matic extractions. This leads to the conclusion that even though the manually created

in-domain dataset does not contain all language pairs, mixing it with the Wikipedia

corpora that has parallel data for every language combination boosts the achievable

performance. This phenomenon can serve as another proof for additional data im-

proving the translation performance of other translation directions during adaptation.

The reverse direction de → es, however, does not behave the same way. While per-

formance improves compared to the unadapted system, they are mostly inferior with

respect to the adaptation results using the manual dataset. The only exception is

the news-test set, where the results are significantly higher compared to the manual

adaptation’s BLEU score, but still cannot get better than the translation of quality of

the system adapted on the top-5,000 Wikipedia extractions only, and fail to produce

significant improvements with respect to the baseline system.

There are a few additional translation directions and test sets where using the merged

data proves to be the best possible configurations regarding the achievable results.

Namely, for en–es, on the news-test2013 set we obtain a significant improvement

compared to the PP adaptation for a certain partition (WP10). On fr → es, the

best results are obtained in the Merge30 scenario, and all Merge systems perform

significantly better than the one adapted only with PP. Still on the same test set,

the fr → de direction delivers the best performance in the Merge5 configuration,

while all Merge configurations significantly overperform PP again. Since the pubPsych

dataset is a domain-specific one, we achieve better results on general-domain data

when combining it with the WP partitions covering broader topics. However, since

some of the Merge systems perform better than the ones adapted only with WP data

proves that the addition of the in-domain PP adaptation set can still be beneficial on

out-of-domain test sets as well.

For en–es and en–de, results change in a negative direction significantly on the EMEA

sets. In the case of en–fr, certain scenarios in the en → fr direction significantly

overperform the baseline system, but they fail to achieve the same improvement as

the PP data does, often staying significantly below those results. The pairs are well-

represented in the training data for the general NMT system, and noisy automatically

extracted data is unable to further improve these results even with the help of manual

pubPsych in-domain parallel corpora. On the news-test2013 test set, the best results
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are delivered on en–es with the Merge10 and Merge30 approaches respectively, that are

both significantly better than the results with the PP adaptation set. For the en–de

pair, the Merge30 result is significantly worse than the one in the PP approach in the

en → de direction. Other systems for this language pair do not showcase significant

differences compared to the PP adaptation scenario (the significant improvement with

respect to the baseline is inherited with the Merge10 adaptation for de→ en).

3.1.5 Comparison to State-of-the-Art Results

While the topic of domain adaptation for ML-NMT systems has not been studied in

much detail previously, results have been reported for non-multilingual systems. In

[Chu et al., 2017], the transfer learning approach similar to ours improves BLEU scores

between 1 and 2 points, while the domain target forcing method yields similar results

with differences usually being only a few decimals between the two techniques. The

results reported in [Freitag & Al-Onaizan, 2016] are approximately 4 points better

compared to the baseline after domain adapting NMT systems via transfer learning.

Both of these studies achieve the results on the en → de translation direction. Our

adapted systems perform approximately 2 points better relative to the baseline for

this scenario, which is in line with [Chu et al., 2017]. It has to be noted that results

are highly dependent on both the data available for training and domain adaptation

and the test sets, thus it is not straightforward to draw such comparisons.

3.1.6 Comparison to SMT Systems

As there are general-domain SMT systems available within the CLUBS project for

language pairs involving en, as well as models trained on in-domain data, we test and

compare their performance on in-domain test sets (pubPsych abstracts test and titles).

The general systems have been trained on close- and out-of-domain data (cf. top two

blocks of Table 2.4), and the in-domain ones on the PP dataset (bottom block of

Table 2.4). The results are shown in Tables 3.3 to 3.5 in the rows SMT BL (baseline)

and SMT PP (in-domain), and are repeated in Table 3.8. For SMT systems, arrows in

front of the numbers of the SMT PP scenario represent significant changes with respect

to the SMT baseline, while the ones after the results indicate significant differences

compared to NMT systems within the same scenario (p = 0.005).
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In case of the abstracts, the SMT baseline systems’ performance is generally signifi-

cantly inferior to the NMT baseline’s (-1–3 points of BLEU), except for en→ es and

en–fr. This shows that the NMT baseline is a strong starting system, and that a

ML-NMT system has superior performance even with a relatively small vocabulary

(80+2 K for all four languages). For the titles test set, the general-domain SMT mod-

els provide translations that are of a remarkably worse quality than those of the NMT

system. A possible explanation for the higher difference is that NMT architectures are

known to be especially good at translating short sentences [Cho et al., 2014a]. The

difference for en–es is -5–7 BLEU scores, and an even higher -16–17 for en–de. In the

case of en–fr, there is a noteworthy difference between the two translation directions.

The SMT baseline for en → fr performs approximately 18 BLEU scores worse than

the NMT system, while for the reverse direction fr → en, this difference is only 3

points, which is the only non-significant case for this test set.

The in-domain SMT systems never achieve better performance than the NMT models

after domain adaptation, and their results are significantly worse than that of the

NMT approaches in most cases. Moreover, their results lie even below the baseline

NMT system’s in all but one cases (en→ es, pubPsych abstracts test). The achievable

performance boosts are significant for en–de; in the case en–es this only occurs for

the es→ en direction on the pubPsych abstracts test set (the only instance where the

NMT PP system’s improvement is not significant with respect to the NMT baseline).

In most cases, using in-domain data improves the SMT systems by 1–3 BLEU scores,

which is in line with the NMT system’s behavior. However, there is a remarkable

positive change on the titles test set for the en–de language pair (around 9 points).

As the baseline SMT system produces low-quality results in this scenario, the positive

effect of the PP data is more pronounced when translating titles between these two

languages.

3.2 Reranking with In-Domain Language Models and Simi-

larity Features

As NMT systems are trained by optimizing the log-likelihood of the output given the

input, the resulting output’s quality in terms of translation evaluation metrics (e. g.

BLEU score) will not be optimal. In the following section we examine the possibilities
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of selecting the best candidates from the decoder’s N -best list, and whether this ap-

proach can be applied to this particular case in order to further improve the translation

quality.

3.2.1 Oracle Translations

As a first step, we generate an 1000-best list of translation candidates3, and for each

sentence we pick such translations that the sentence-level BLEU score is maximized.

After obtaining oracle translations this way, we get an insight to the theoretically

achievable best performance. We choose the en → es, en → de, and es → en

translation directions and run experiments on the pubPsych abstracts test set with

the model adapted in the PP scenario, as well as with the baseline models. As for

the adapted models, BLEU scores showcase more than 7 points of improvement for

en → de, and an even higher (almost 13 points) for en → es and es → en. The

achievable improvements are lower for the unadapted systems (about 2 BLEU scores

for en→ de, 6 for en→ es, and 10 for es→ en; cf. Table 3.9).

3.2.2 Reranking Approaches

As the goal is to pick the best candidates without knowing their quality in terms of

BLEU score, a model needs to be designed that is capable of adequately finding high-

quality translations and getting as close to the theoretical maximum as possible. As

domain-specifig language models can successfully be used for in-domain data selection,

we can treat the decoder’s N -best list in a similar fashion for selecting the best trans-

lations. In the following paragraphs we describe and analyze the usability of various

approaches within this framework. In all experiments we use 5-gram language models

trained on in-domain and general data, made available within the CLUBS project for

the purposes of this thesis.

3The achievable highest improvements would be possible by increasing the number of n during
decoding. However, this also increases computational cost in terms of both memory and runtime.
Therefore, we set n=1000.
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Table 3.8. Performance of NMT and SMT systems (BLEU) on in-domain data.

PP abs. (test) PP tit.

NMT BL SMT BL NMT PP SMT PP NMT BL SMT BL NMT PP SMT PP

en→ es 31.60 32.11 ↑34.39 32.83 42.71 35.22↓ ↑44.56 36.58↓
es→ en 31.20 29.94↓ 31.77 ↑31.07 38.55 33.48↓ ↑40.29 35.51↓

en→ de 11.05 8.33↓ ↑12.16 ↑10.94↓ 31.23 15.92↓ ↑33.28 ↑24.12↓
de→ en 15.80 12.77↓ ↑17.11 ↑15.61↓ 40.79 23.64↓ 41.70 ↑32.79↓

en→ fr 19.01 20.14 ↑21.16 – 40.00 22.79↓ ↓38.35 –
fr → en 24.60 23.80 24.89 – 39.09 36.00 39.98 –

Table 3.9. Results of the N -best rescoring experiments (BLEU) for adapted (a.) and unadapted (ua.) systems on the pubPsych abstracts test
set.

Method en→ es, a. en→ es, ua. en→ de, a. en→ de, ua. es→ en, a. es→ en, ua.

Baseline 34.39 31.60 12.16 11.05 31.77 31.20

Oracle 47.00 37.40 19.26 13.72 44.45 41.42

PPL 30.69 27.85 9.64 5.09 28.63 25.66
IN-GEN 29.03 28.05 9.66 4.89 28.62 25.15
IN-GEN,SRC+TGT 29.03 28.05 9.66 4.89 28.62 25.15
SIM 30.20 21.02 6.99 2.17 42.66 39.67
SIM+LF 31.02 21.02 6.98 2.14 39.98 38.25
PPL+SIM+LF 30.97 27.85 9.75 5.09 28.63 25.66
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In the first approach (PPL), we use the method proposed in [Klakow, 2000]. We

use the in-domain language model for obtaining perplexities on each candidate sen-

tence. For each source translation we choose the corresponding target that has the

lowest perplexity. The second approach (IN-GEN) is based on the method described

by the authors of [Moore & Lewis, 2010]. We obtain cross-entropy scores by using

both general (Hgen) an in-domain (Hin) language models and use their difference for

rescoring:

score = Hin −Hgen (3.1)

The assumption of this approach is that the best translations should be like in-domain

sentences while being as different from general domain sentences as possible. The

third approach (IN-GEN,SRC+TGT) builds on the second one, this time using the

exact method described in [Axelrod et al., 2011]:

score = (H tgt
in −H tgt

gen) + (Hsrc
in −Hsrc

gen) (3.2)

The interpretation of this scenario is that source side sentences should also be taken

into consideration. The fourth approach (SIM) is based on the similarity averages

rather than language models, similar to the method used for parallel sentence extrac-

tion rescoring (i. e. average of complementary similarity features, cf. 2.3.2 for details).

We experiment with both including (+LF) and excluding the length factor parameter

as an additional term for the average score. Finally, we experiment with combining

the scores of the best performing language model approach and the similarity average

method (PPL+SIM+LF). In this case, we convert the score given by the LM rescoring

to the [0,1] interval in order to comply with the similarity scores.

3.2.3 Results

The results of the various approaches are summarized in Table 3.9. It can generally be

concluded that methods including LMs cannot be successfully applied in the case of
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these particular translation directions and test sets, as all results lie below the baseline.

This is due to the fact that scores based on perplexities/cross-entropies prefer shorter

sentences, and select these from the N -best lists. It is also worth pointing out that

the inclusion of target-side cross-entropies does not affect the results (IN-GEN and

IN-GEN,SRC+TGT).

Among the various rescoring methods, SIM+LF performs the best for en → es (al-

though the result is still more than 3 points below the baseline). However, for en→ de,

this approach yields the worse results. Looking at the N -best list it is revealed that

there are a high number of candidates that are not translated into the correct target

language, and appear in en on the target side. This phenomenon is similar to the one

observed during the WP adaptation experiments with a lower batch size (cf. Subsec-

tion 3.1.3). If similarity features are used for reranking, these candidates will receive

a higher score due to their being in the same language, which explains the low BLEU

scores. Incorrect target language translations appear for both of these directions,

however, for en → de, they occur more frequently, that explains the deteriorating

translation quality, while for en→ es it is able to outperform LM-based methods.

On the other hand, for the es → en direction, the approaches based on similarity

features yield considerable improvements. The SIM method selects candidates from

both the unadapted and adapted models’ output that lie only two points below the

theoretically achievable best performance, and overperform the baseline results by

approximately 8 and 11 points, respectively. Including the length factor (SIM+LF)

leads to slightly inferior translation quality, while results are still well above that of

the baseline models. The explanation for this behavior is that in this case, there

are no candidates in the incorrect target language. This fact leads to the conclusion

that if the problem of wrong translation directions is eliminated, similarity features

can successfully be used for reranking of N -best translation lists in order to boost

the performance both before and after domain adaptation. Investigating all transla-

tion directions and overcoming the target forcing issue should be a priority of future

research.

Combining the similarity-based reranking with perplexity scores (PPL+SIM+LF)

yields results that are in most cases upper bound by the performance of the PPL

system (their BLEU scores are a few decimals higher for the adapted en → es and

en → de directions), which assumes a bias towards the LM scores. This could be

overcome by introducing weighing factors between the two terms in future work.
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Conclusions and Future Research

In this thesis project we investigated ML-NMT systems, focusing on domain adapta-

tion. First, we gave of an overview of the NMT architecture used in this thesis, its

multilingual extension, and possible domain adaptation methods. We then described

the available resources for the purposes of this project, and proposed an automatic

method for acquiring in-domain parallel corpora from Wikipedia using NMT context

vector embedding similarities, and various complementary similarity measures. We

have seen that these features can successfully be used to train supervised classifiers

and regression models for extracting parallel sentences from comparable corpora. Due

to the nature of the task, our final approach used a regression model trained on contin-

uous similarity labels, and we selected different partitions of extracted sentence pairs,

reranked by average similarity feature scores.

We have run several domain adaptation experiments in order to get a clear picture

of how the quality and quantity of the adaptation data affects the translation perfor-

mance of NMT systems. We have drawn several conclusions regarding this question.

Firstly, clean parallel adaptation data has a clear benefit for the language pairs it

contains, and it can even improve the quality of translation directions that it does

not. This behavior is similar to what has been observed regarding zero-shot directions

when training NMT systems from scratch. Secondly, we have shown that by using

our proposed automatic in-domain adaptation corpus creation method, significant im-

provements can be achieved for under- or zero-resourced language pairs. Furthermore,

the combination of parallel and comparable adaptation data often proved to be useful,

and could yield further improvements, especially in cases where the Wikipedia extrac-

tions alone are beneficial. Finally, we have concluded that translation directions can

behave differently within particular language pairs, as well as that the exact behavior

of the adapted systems is dependent on the given test sets.
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In addition to transfer learning, we also experimented with selecting the best trans-

lations from the decoder’s N -best list, using language models and similarity features.

We have shown that the adapted systems produce higher-quality oracle translations.

Methods based on LM scores did not result in improvements for any tested transla-

tion direction due to their bias towards short sentences. However, we have shown that

using similarity features for reranking can successfully be used as long as the output

candidates do not include instances in the source language, as the quality of trans-

lations selected this way lied only 2 BLEU scores below the theoretically achievable

best performance.

In future work, the quality of the extractions from Wikipedia can be further improved

by creating training sets that better mirror the nature of the task. Related to this, the

quality of the automatic extractions can also be evaluated. As both these tasks would

involve extensive human labor, they can be performed via crowdsourcing. Another

point to consider is narrowing the domain coverage of the extractions that can boost

the performance on in-domain data sets as long as it does not lead to loosing too many

high-quality parallel sentence pairs.

Regarding domain adaptation, one other line of investigation to be carried out in

the future is testing the adapted systems on in-domain data for language pairs not

including en. As at the time of writing this thesis these tests are not yet available,

our results are only reported on close- and general-domain test sets. The possibilities

of maximizing translation quality using reranking also need to be further researched.

The priority should be overcoming the issues with incorrect target forcing in the N -

best lists, so that other translation directions can also benefit from the remarkable

improvements achieved by the similarity-based approach for es → en. Furthermore,

testing on additional translation directions and test sets would also be necessary in

order to investigate the full potential of our proposed methods.

In this thesis project, the focus was laid on NMT systems. In future research, the same

set of domain adaptation experiments can be repeated with SMT architectures with all

adaptation sets and for all language pairs. This would allow for drawing comparisons

between the two paradigms with respect to the amount and quality of the adaptation

data, and the noise tolerance of the respective approaches. Furthermore, it would

make it possible to compare the behavior zero-shot and under-resourced translation

directions between NMT and SMT systems during adaptation.

67



List of Abbreviations

BLEU Bilingual Evaluation Understudy

CNN Convolutional Neural Network

BRNN Bidirectional Recurrent Neural Network

DNN Deep Neural Network

GRU Gated Recurrent Unit

LM Language Model

LSTM Long Short-Term Memory

ML-NMT Multilingual Neural Machine Translation

MT Machine Translation

NMT Neural Machine Translation

RBMT Rule-Based Machine Translation

RNN Recurrent Neural Network

SMT Statistical Machine Translation

68



List of Tables

2.1 Number of records in different languages in the pubPsych database. . . 20

2.2 Availability of resources in number of records between various language

combinations in the pubPsych database. . . . . . . . . . . . . . . . . . 20

2.3 Statistics of the pubPsych parallel corpora by language pair, partition

and titles/abstracts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Size of the general, EMEA and Scielo parallel corpora. . . . . . . . . . 22

2.5 Size of the development and test sets available in the project. . . . . . . 23

2.6 Number of extracted comparable in-domain Wikipedia articles and sen-

tences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Statistics of the BUCC and SemEval corpora. . . . . . . . . . . . . . . 26

2.8 Number of candidate sentence pairs for language pairs. . . . . . . . . . 28

2.9 Average length factor values (µ) and their standard deviation (σ) for

each language pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 Threshold values, corresponding training accuracies (Tr. Acc) and test

results for context vector similarities on the BUCC corpora. . . . . . . 33

2.11 Classification results (F1 %) with DNN-based classification. . . . . . . . 34

2.12 Thresholds values of similarity averages on the BUCC training copora

using the all feature set. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Precision (P), Recall (R) and F1 scores (%) obtained on the binary

classification of sentence pairs on the held-out test set. . . . . . . . . . 36

69



2.14 Size in number of parallel sentences of the extracted in-domain corpus

from Wikipedia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.15 Held-out test set results with the additional dataset. Results are shown

for BUCC-only (BUCC) and joint (BUCC+SemEval) training copora

(Tr.) and test sets (Test) . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Relative improvements on in-domain and general test sets using the

manual adaptation data. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Distribution of target forcing tags in the PP adaptation dataset. . . . . 51

3.3 Adaptation results (BLEU) for en–es. Best results on each test set are

shown in bold (in case of significant improvements). . . . . . . . . . . . 53

3.4 Adaptation results (BLEU) for en–de. Best results on each test set are

shown in bold (in case of significant improvements). . . . . . . . . . . . 54

3.5 Adaptation results (BLEU) for en–fr. Best results on each test set are

shown in bold (in case of significant improvements). . . . . . . . . . . . 55

3.6 Adaptation results (BLEU) for es–de. Best results on each test set are

shown in bold (in case of significant improvements). . . . . . . . . . . . 56

3.7 Adaptation results (BLEU) for es–fr and de–fr. Best results on each

test set are shown in bold (in case of significant improvements). . . . . 56

3.8 Performance of NMT and SMT systems (BLEU) on in-domain data. . . 63

3.9 Results of the N -best rescoring experiments (BLEU) for adapted (a.)

and unadapted (ua.) systems on the pubPsych abstracts test set. . . . . 63

70



Bibliography

[Axelrod et al., 2011] Axelrod, A., He, X., & Gao, J. (2011). Domain adaptation via pseudo in-

domain data selection. In Proceedings of the 2011 Conference on Empirical Methods in Natural

Language Processing (EMNLP) (pp. 355–362). Edinburgh, Scotland, UK.: Association for Com-

putational Linguistics.

[Bahdanau et al., 2015] Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by

jointly learning to align and translate. In International Conference on Learning Representations

2015 San Diego, California, USA.

[Barrón-Cedeño et al., 2015] Barrón-Cedeño, A., España Bonet, C., Boldoba Trapote, J., &

Márquez Villodre, L. (2015). A factory of comparable corpora from wikipedia. In Proceedings

of the Eighth Workshop on Building and Using Comparable Corpora (pp. 3–13).: Association for

Computational Linguistics.

[Bisazza et al., 2011] Bisazza, A., Ruiz, N., Federico, M., & Kessler, F.-F. B. (2011). Fill-up versus

interpolation methods for phrase-based smt adaptation. In International Workshop on Spoken

Language Translation 2011 (pp. 136–143). San Francisco, California, USA.

[Bojar et al., 2016] Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M.,

Jimeno Yepes, A., Koehn, P., Logacheva, V., Monz, C., Negri, M., Neveol, A., Neves, M., Popel,

M., Post, M., Rubino, R., Scarton, C., Specia, L., Turchi, M., Verspoor, K., & Zampieri, M. (2016).

Findings of the 2016 conference on machine translation. In Proceedings of the First Conference on

Machine Translation (pp. 131–198). Berlin, Germany: Association for Computational Linguistics.

[Bridle, 1990] Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks

can lead to maximum mutual information estimation of parameters. In D. S. Touretzky (Ed.),

Advances in Neural Information Processing Systems 2 (pp. 211–217). Morgan-Kaufmann.

[Britz et al., 2017] Britz, D., Goldie, A., Luong, T., & Le, Q. (2017). Massive exploration of neural

machine translation architectures. arXiv preprint arXiv:1703.03906.

[Chen & Eisele, 2012] Chen, Y. & Eisele, A. (2012). Multiun v2: Un documents with multilingual

alignments. In N. Calzolari, K. Choukri, T. Declerck, M. U. Doan, B. Maegaard, J. Mariani,

A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Eight International Conference

on Language Resources and Evaluation (LREC) Istanbul, Turkey: European Language Resources

Association (ELRA).

71



[Cheng et al., 2016] Cheng, Y., Liu, Y., Yang, Q., Sun, M., & Xu, W. (2016). Neural machine

translation with pivot languages. arXiv preprint arXiv:1611.04928.

[Cho, 2015] Cho, K. (2015). Introduction to Neural Machine Trans-

lation with GPUs. https://devblogs.nvidia.com/parallelforall/

introduction-neural-machine-translation-with-gpus/. [Online; accessed 17-March-2017].

[Cho et al., 2014a] Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014a). On the

properties of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8,

Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (pp. 103–111).

Doha, Qatar: Association for Computational Linguistics.
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